Supply-side drivers of phosphorus emissions from phosphorus supply chains in China

IF 4.2 2区 环境科学与生态学 Q1 ECOLOGY Ecosystem Health and Sustainability Pub Date : 2022-07-29 DOI:10.1080/20964129.2022.2107578
J. Zhang, Qiumeng Zhong, Yadong Yu, Jetashree ., Xuechun Yang, Cuiyang Feng, Hui Li, Sai Liang
{"title":"Supply-side drivers of phosphorus emissions from phosphorus supply chains in China","authors":"J. Zhang, Qiumeng Zhong, Yadong Yu, Jetashree ., Xuechun Yang, Cuiyang Feng, Hui Li, Sai Liang","doi":"10.1080/20964129.2022.2107578","DOIUrl":null,"url":null,"abstract":"ABSTRACT Human activities interfere with natural Phosphorus (P) cycles by introducing increased levels of P emissions to air, land, and water. A supply-side analysis of P supply chains and associated P emissions can provide insights into underlying economic activities and transitions responsible for human-induced P emissions. Taking the mainland China as the case, this study constructs time-series physical input-output tables to describe P supply chains during 1949–2012. Subsequently, it identifies critical products and influencing factors of P supply chains enabling P emissions to the environment (including air, land, and water) from the supply perspective. The results show that phosphate rock, an important initial supplier of P from natural environment to China’s P supply chain, was responsible for 86% of P emissions in 2012. Moreover, food crops and livestock are important initial suppliers of P from soil to China’s P supply chain, through cultivation and pasturing, respectively. From 1949 to 2012, the change in primary input level was the largest driver of P emission increments, followed by changes in population, emission intensity, and primary input structure. On the contrary, changes in production structure reduced P emissions. These findings could support supply-side policy decisions on P emission control.","PeriodicalId":54216,"journal":{"name":"Ecosystem Health and Sustainability","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecosystem Health and Sustainability","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/20964129.2022.2107578","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

ABSTRACT Human activities interfere with natural Phosphorus (P) cycles by introducing increased levels of P emissions to air, land, and water. A supply-side analysis of P supply chains and associated P emissions can provide insights into underlying economic activities and transitions responsible for human-induced P emissions. Taking the mainland China as the case, this study constructs time-series physical input-output tables to describe P supply chains during 1949–2012. Subsequently, it identifies critical products and influencing factors of P supply chains enabling P emissions to the environment (including air, land, and water) from the supply perspective. The results show that phosphate rock, an important initial supplier of P from natural environment to China’s P supply chain, was responsible for 86% of P emissions in 2012. Moreover, food crops and livestock are important initial suppliers of P from soil to China’s P supply chain, through cultivation and pasturing, respectively. From 1949 to 2012, the change in primary input level was the largest driver of P emission increments, followed by changes in population, emission intensity, and primary input structure. On the contrary, changes in production structure reduced P emissions. These findings could support supply-side policy decisions on P emission control.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国磷供应链中磷排放的供给侧驱动因素
摘要人类活动通过增加空气、土地和水的磷排放水平来干扰自然磷循环。对磷供应链和相关磷排放的供应方分析可以深入了解造成人类磷排放的潜在经济活动和转型。本研究以中国大陆为例,构建了描述1949–2012年P供应链的时间序列物理投入产出表。随后,从供应角度确定了磷供应链的关键产品和影响因素,使磷排放到环境(包括空气、土地和水)。结果表明,磷矿石是中国磷供应链中自然环境磷的重要初始供应商,2012年磷排放量占总排放量的86%。此外,粮食作物和牲畜分别是从土壤到中国磷供应链的重要初始供应商,通过种植和放牧。从1949年到2012年,初级投入水平的变化是P排放增量的最大驱动因素,其次是人口、排放强度和初级投入结构的变化。相反,生产结构的变化减少了磷的排放。这些研究结果可以为磷排放控制的供应方政策决策提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecosystem Health and Sustainability
Ecosystem Health and Sustainability Environmental Science-Management, Monitoring, Policy and Law
CiteScore
7.10
自引率
2.00%
发文量
40
审稿时长
22 weeks
期刊介绍: Ecosystem Health and Sustainability publishes articles on advances in ecology and sustainability science, how global environmental change affects ecosystem health, how changes in human activities affect ecosystem conditions, and system-based approaches for applying ecological science in decision-making to promote sustainable development. Papers focus on applying ecological theory, principles, and concepts to support sustainable development, especially in regions undergoing rapid environmental change. Papers on multi-scale, integrative, and interdisciplinary studies, and on international collaborations between scientists from industrialized and industrializing countries are especially welcome. Suitable topics for EHS include: • Global, regional and local studies of international significance • Impact of global or regional environmental change on natural ecosystems • Interdisciplinary research involving integration of natural, social, and behavioral sciences • Science and policy that promote the use of ecological sciences in decision making • Novel or multidisciplinary approaches for solving complex ecological problems • Multi-scale and long-term observations of ecosystem evolution • Development of novel systems approaches or modeling and simulation techniques • Rapid responses to emerging ecological issues.
期刊最新文献
Thinning and managed burning enhance forest resilience in northeastern California Assessing forest ecosystem services in the Greater Khingan Mountains area using remote sensing Spatiotemporal variation in ecosystem health caused by land use and land cover change in Pakistan Integrating multiple diversity and socio-economic criteria in Tibetan felid conservation Regulation of precipitation on soil dissolved organic matter in perturbed mangrove ecosystems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1