P. H'ng, E. Chai, K. Chin, S. Peng, W. M. Wan-Azha, I. Halimatun, W. Z. Go, P. S. Khoo, C. L. Lee, R. A. Raja-Nazrin, S. N. Ashikin
{"title":"Evolution of Organic Matter Within Sixty Days of Composting of Lignocellulosic Food Industry Waste in Malaysia","authors":"P. H'ng, E. Chai, K. Chin, S. Peng, W. M. Wan-Azha, I. Halimatun, W. Z. Go, P. S. Khoo, C. L. Lee, R. A. Raja-Nazrin, S. N. Ashikin","doi":"10.1080/1065657X.2017.1342105","DOIUrl":null,"url":null,"abstract":"ABSTRACT Empty fruit bunches (EFB), coffee grounds (CG), and palm oil mill sludge (POMS) were composted in the laboratory for 60 days in order to study the composting process of lignocellulosic food industry wastes. In the first part of the experiment, EFB, CG, and POMS were composted alone (composting of single lignocellulosic material), and in the second part, EFB was composted with CG (1EFB:1CG ratio) and POMS (1EFB:1POMS ratio). The effects of different turning frequencies on the physical and chemical properties of composting were observed and its relation with the degradation process was highlighted. Results showed that oil and grease were first degraded, followed by recalcitrant compounds like alpha-cellulose, hemicellulose, and lignin. Cellulose and hemicellulose were degraded mainly during the 60 days of composting, and the progressive reduction of the cellulose/lignin ratio proved that the main evolution of these wastes took place. It was observed that 3, 6, and 9 days of turning frequency did not affect the physicochemical properties of the compost. Composting EFB alone failed to achieve the required quality of maturity compost within 60 days, while CG and POMS recorded low in biological activity. Better results were shown in composting of EFB mixed with coffee grounds and POMS, the C/N ratio dropped to less than 20 by the 8th week of the composting period. Composting of mixed lignocellulosic materials showed larger changes compared to composting of single lignocellulosic material, reaching a C/N ratio below 20 within 8 weeks.","PeriodicalId":10714,"journal":{"name":"Compost Science & Utilization","volume":"26 1","pages":"16 - 26"},"PeriodicalIF":2.0000,"publicationDate":"2017-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1065657X.2017.1342105","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compost Science & Utilization","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/1065657X.2017.1342105","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
ABSTRACT Empty fruit bunches (EFB), coffee grounds (CG), and palm oil mill sludge (POMS) were composted in the laboratory for 60 days in order to study the composting process of lignocellulosic food industry wastes. In the first part of the experiment, EFB, CG, and POMS were composted alone (composting of single lignocellulosic material), and in the second part, EFB was composted with CG (1EFB:1CG ratio) and POMS (1EFB:1POMS ratio). The effects of different turning frequencies on the physical and chemical properties of composting were observed and its relation with the degradation process was highlighted. Results showed that oil and grease were first degraded, followed by recalcitrant compounds like alpha-cellulose, hemicellulose, and lignin. Cellulose and hemicellulose were degraded mainly during the 60 days of composting, and the progressive reduction of the cellulose/lignin ratio proved that the main evolution of these wastes took place. It was observed that 3, 6, and 9 days of turning frequency did not affect the physicochemical properties of the compost. Composting EFB alone failed to achieve the required quality of maturity compost within 60 days, while CG and POMS recorded low in biological activity. Better results were shown in composting of EFB mixed with coffee grounds and POMS, the C/N ratio dropped to less than 20 by the 8th week of the composting period. Composting of mixed lignocellulosic materials showed larger changes compared to composting of single lignocellulosic material, reaching a C/N ratio below 20 within 8 weeks.
期刊介绍:
4 issues per year
Compost Science & Utilization is currently abstracted/indexed in: CABI Agriculture & Environment Abstracts, CSA Biotechnology and Environmental Engineering Abstracts, EBSCOhost Abstracts, Elsevier Compendex and GEOBASE Abstracts, PubMed, ProQuest Science Abstracts, and Thomson Reuters Biological Abstracts and Science Citation Index