Optimization for vibro-impact nonlinear energy sink under random excitation

IF 3.2 3区 工程技术 Q2 MECHANICS Theoretical and Applied Mechanics Letters Pub Date : 2022-09-01 DOI:10.1016/j.taml.2022.100364
Jiamin Qian , Lincong Chen
{"title":"Optimization for vibro-impact nonlinear energy sink under random excitation","authors":"Jiamin Qian ,&nbsp;Lincong Chen","doi":"10.1016/j.taml.2022.100364","DOIUrl":null,"url":null,"abstract":"<div><p>As a promising vibration control device, the vibro-impact nonlinear energy sink (VI-NES) gathered extensively attention in recent years. However, general optimization procedures have not been available for the design of VI-NES subjected to random excitations. To this end, this paper constitutes a research effort to address this gap. Specifically, the approximate analytical solution of the system stochastic response is obtained in conjunction with non-smooth conversion and stochastic averaging methodology. Taking advantages of this approximate solution, the variance of the system is defined and easily minimized to calculate the optimal parameters for VI-NES. In addition, the results computed by this way fairly correlate with direct numeric simulations.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":"12 5","pages":"Article 100364"},"PeriodicalIF":3.2000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095034922000447/pdfft?md5=badd93986d39d1709dd47ee77e5ae01a&pid=1-s2.0-S2095034922000447-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095034922000447","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

Abstract

As a promising vibration control device, the vibro-impact nonlinear energy sink (VI-NES) gathered extensively attention in recent years. However, general optimization procedures have not been available for the design of VI-NES subjected to random excitations. To this end, this paper constitutes a research effort to address this gap. Specifically, the approximate analytical solution of the system stochastic response is obtained in conjunction with non-smooth conversion and stochastic averaging methodology. Taking advantages of this approximate solution, the variance of the system is defined and easily minimized to calculate the optimal parameters for VI-NES. In addition, the results computed by this way fairly correlate with direct numeric simulations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机激励下振动冲击非线性能量汇优化
振动冲击非线性能量阱作为一种很有前途的振动控制装置,近年来受到了广泛的关注。然而,对于受随机激励的VI-NES的设计,还没有通用的优化程序。为此,本文构成了解决这一差距的研究努力。具体地,结合非光滑转换和随机平均方法,得到了系统随机响应的近似解析解。利用这一近似解,系统的方差被定义并易于最小化,从而计算出VI-NES的最优参数。此外,用这种方法计算的结果与直接数值模拟结果相当吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
2.90%
发文量
545
审稿时长
12 weeks
期刊介绍: An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).
期刊最新文献
Multi-scale physics-informed neural networks for solving high Reynolds number boundary layer flows based on matched asymptotic expansions Inverse design of mechanical metamaterial achieving a prescribed constitutive curve An adaptive machine learning-based optimization method in the aerodynamic analysis of a finite wing under various cruise conditions A Call for Enhanced Data-Driven Insights into Wind Energy Flow Physics Towards data-efficient mechanical design of bicontinuous composites using generative AI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1