Study of the NIAP-06-06 Zinc–Copper Catalyst for the Steam Reforming of Carbon Monoxide in the Synthesis of Methanol

IF 0.7 Q4 ENGINEERING, CHEMICAL Catalysis in Industry Pub Date : 2022-06-22 DOI:10.1134/S2070050422020064
G. B. Narochnyi, A. P. Savost’yanov, I. N. Zubkov, A. V. Dul’nev, R. E. Yakovenko
{"title":"Study of the NIAP-06-06 Zinc–Copper Catalyst for the Steam Reforming of Carbon Monoxide in the Synthesis of Methanol","authors":"G. B. Narochnyi,&nbsp;A. P. Savost’yanov,&nbsp;I. N. Zubkov,&nbsp;A. V. Dul’nev,&nbsp;R. E. Yakovenko","doi":"10.1134/S2070050422020064","DOIUrl":null,"url":null,"abstract":"<p>A study is performed by using a zinc–copper catalyst for the steam reforming of CO NIAP-06-06 in the synthesis of methanol. The catalyst is characterized via the TPV of N<sub>2</sub>, XRF, and SEM. It is tested in the synthesis of methanol in flow and circulation modes at a pressure of 5.0 MPa, GHSV of 3000 h<sup>−1</sup>, and the 220–260°C range of temperatures. It is shown that the catalyst has high activity and selectivity in synthesizing methanol from gas obtained in the ratio H<sub>2</sub> : CO = 3.9 via the steam reforming of methane. Using a series of tubular catalytic reactors in the technological mode of a flow circle allows more than 70% of the CO to be processed and raw methanol to be obtained with a concentration of 95%. The performance of the catalyst for methanol is 427.7 kg/(<span>\\({\\text{m}}_{{{\\text{cat}}}}^{3}\\)</span> h) in the circulation mode.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"14 2","pages":"189 - 194"},"PeriodicalIF":0.7000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis in Industry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2070050422020064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A study is performed by using a zinc–copper catalyst for the steam reforming of CO NIAP-06-06 in the synthesis of methanol. The catalyst is characterized via the TPV of N2, XRF, and SEM. It is tested in the synthesis of methanol in flow and circulation modes at a pressure of 5.0 MPa, GHSV of 3000 h−1, and the 220–260°C range of temperatures. It is shown that the catalyst has high activity and selectivity in synthesizing methanol from gas obtained in the ratio H2 : CO = 3.9 via the steam reforming of methane. Using a series of tubular catalytic reactors in the technological mode of a flow circle allows more than 70% of the CO to be processed and raw methanol to be obtained with a concentration of 95%. The performance of the catalyst for methanol is 427.7 kg/(\({\text{m}}_{{{\text{cat}}}}^{3}\) h) in the circulation mode.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NIAP-06-06型锌铜催化剂用于甲醇合成中一氧化碳蒸汽重整的研究
采用锌-铜催化剂对CO NIAP-06-06在甲醇合成中的蒸汽重整进行了研究。通过N2的TPV、XRF和SEM对催化剂进行了表征。在压力5.0 MPa、GHSV 3000 h−1、温度220 ~ 260℃范围内,以流动和循环方式合成甲醇。结果表明,该催化剂对H2: CO = 3.9的甲烷蒸汽重整气合成甲醇具有较高的活性和选择性。采用串联管式催化反应器的工艺模式,允许一个流动循环70多个% of the CO to be processed and raw methanol to be obtained with a concentration of 95%. The performance of the catalyst for methanol is 427.7 kg/(\({\text{m}}_{{{\text{cat}}}}^{3}\) h) in the circulation mode.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Catalysis in Industry
Catalysis in Industry ENGINEERING, CHEMICAL-
CiteScore
1.30
自引率
14.30%
发文量
21
期刊介绍: The journal covers the following topical areas: Analysis of specific industrial catalytic processes: Production and use of catalysts in branches of industry: chemical, petrochemical, oil-refining, pharmaceutical, organic synthesis, fuel-energetic industries, environment protection, biocatalysis; technology of industrial catalytic processes (generalization of practical experience, improvements, and modernization); technology of catalysts production, raw materials and equipment; control of catalysts quality; starting, reduction, passivation, discharge, storage of catalysts; catalytic reactors.Theoretical foundations of industrial catalysis and technologies: Research, studies, and concepts : search for and development of new catalysts and new types of supports, formation of active components, and mechanochemistry in catalysis; comprehensive studies of work-out catalysts and analysis of deactivation mechanisms; studies of the catalytic process at different scale levels (laboratory, pilot plant, industrial); kinetics of industrial and newly developed catalytic processes and development of kinetic models; nonlinear dynamics and nonlinear phenomena in catalysis: multiplicity of stationary states, stepwise changes in regimes, etc. Advances in catalysis: Catalysis and gas chemistry; catalysis and new energy technologies; biocatalysis; nanocatalysis; catalysis and new construction materials.History of the development of industrial catalysis.
期刊最新文献
Use of Microalgae Biomass to Synthesize Marketable Products. Part 5: Production of Jet Fuel from Microalgae Biomass Use of Microalgae Biomass to Synthesize Marketable Products. Part 6: Production of Bioplastics from Microalgae Studying the Kinetic Laws of the Liquid-Phase Oxidation of sec-Butylbenzene in the Presence of N-Hydroxyphthalimide Dehydrogenation of n-Butane to Butadiene-1,3 on Aluminochromium Catalyst. Part 2: Formulating a Mathematical Model of the Reactor Experimental Studies and Mathematical Modeling of the Catalytic Conversion of Biodiesel Fuel to Synthesis Gas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1