{"title":"Invasive mangroves produce unsuitable habitat for endemic goby and burrowing shrimp pairs in Kāneʻohe Bay, O‘ahu, Hawai‘i","authors":"Mandy Hansen","doi":"10.7773/cm.v46i4.3185","DOIUrl":null,"url":null,"abstract":"Hawai‘ian ecosystems evolved in relative isolation and support an abundance of native and endemic species. As such, they are particularly vulnerable to introduced species that alter habitat and interfere with species interactions. Although mangroves are valued globally for shoreline protection and other services, their invasion of the Hawai‘ian islands may have negative effects on the abundance and functions of native species. On an island in Kāne‘ohe Bay, O‘ahu, we explored the relationship between invasion of the red mangrove, Rhizophora mangle, and abundance of the native burrowing shrimp Alpheus rapax, which shares its burrows with the endemic goby Psilogobius mainlandi in a mutualism that reduces predation on both. We hypothesized that the abundance of shrimp/goby burrows is reduced beneath mangroves due to increased cover associated with mangrove prop roots, which trap leaves and debris and may harbor the invasive red alga Gracilaria salicornia. At 3 mangrove-invaded sites, we conducted a survey of burrow density and benthic debris and found ~4–5× lower burrow density and 4× greater cover of debris under the mangrove edge compared to sandflats that were 1.5 and 5.0 m away. Burrow density was negatively correlated with total cover of benthic debris and with subgroups of that cover composed of G. salicornia or leaves. We tested the effect of debris removal over 2 weeks, which resulted in 3–8× more burrows. Thus, we provide evidence that invasive red mangroves, through trapping leaves and promoting presence of invasive G. salicornia among their prop roots, have strong negative effects on shrimp/goby burrow density. Although our study was limited in spatial scope, we propose that current efforts to remove mangroves in Hawai‘i, for both cultural and ecological reasons, will mitigate negative effects on endemic goby and native shrimp habitat.","PeriodicalId":50702,"journal":{"name":"Ciencias Marinas","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ciencias Marinas","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7773/cm.v46i4.3185","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hawai‘ian ecosystems evolved in relative isolation and support an abundance of native and endemic species. As such, they are particularly vulnerable to introduced species that alter habitat and interfere with species interactions. Although mangroves are valued globally for shoreline protection and other services, their invasion of the Hawai‘ian islands may have negative effects on the abundance and functions of native species. On an island in Kāne‘ohe Bay, O‘ahu, we explored the relationship between invasion of the red mangrove, Rhizophora mangle, and abundance of the native burrowing shrimp Alpheus rapax, which shares its burrows with the endemic goby Psilogobius mainlandi in a mutualism that reduces predation on both. We hypothesized that the abundance of shrimp/goby burrows is reduced beneath mangroves due to increased cover associated with mangrove prop roots, which trap leaves and debris and may harbor the invasive red alga Gracilaria salicornia. At 3 mangrove-invaded sites, we conducted a survey of burrow density and benthic debris and found ~4–5× lower burrow density and 4× greater cover of debris under the mangrove edge compared to sandflats that were 1.5 and 5.0 m away. Burrow density was negatively correlated with total cover of benthic debris and with subgroups of that cover composed of G. salicornia or leaves. We tested the effect of debris removal over 2 weeks, which resulted in 3–8× more burrows. Thus, we provide evidence that invasive red mangroves, through trapping leaves and promoting presence of invasive G. salicornia among their prop roots, have strong negative effects on shrimp/goby burrow density. Although our study was limited in spatial scope, we propose that current efforts to remove mangroves in Hawai‘i, for both cultural and ecological reasons, will mitigate negative effects on endemic goby and native shrimp habitat.
期刊介绍:
A bilingual open-access publication, Ciencias Marinas (CM) is an international peer-reviewed journal that contains original research findings in all areas of marine science. It is published quarterly by the Autonomous University of Baja California, Mexico, and all its contents are publicly available on our journal website. Though a limited number of copies are still printed, the journal is mainly distributed in its electronic format.
CM was conceived in 1973 as part of an academic project aimed to entice local researchers to publicly disclose their findings by adopting the culture of peer-review publishing. This academic project evolved into an international journal after accepting papers from researchers in the United States and, eventually, other parts of the world. Because of the diversity in authorship, CM issues were initially published in either Spanish or English, and occasionally in both languages. It was not until 1984 when CM included both language versions of all its contents, and it then became the fully bilingual journal it still is today. At CM we believe our inclusive format allows us not only to address a wider range of submissions from international authors but also to make published findings available to a wider international audience.
So whether you are looking for information on the redfish in Icelandic waters or the physical and biological properties of the Gulf of California, feel free to peruse CM contents. You may find them to provide source material for your research.