{"title":"Effects of micro-flocculation pretreatment on the ultrafiltration membrane fouling caused by different dissolved organic matters in treated wastewater","authors":"Lan-Yang Ren, Chen Liu, Ting Meng, Yingxue Sun","doi":"10.2166/wrd.2021.051","DOIUrl":null,"url":null,"abstract":"\n This study investigated the efficacy of using micro-flocculation as a pretreatment approach in alleviating ultrafiltration (UF) membrane fouling caused by organic matter in treated wastewater. Three typical model dissolved organic matters (DOM), humic acid, fulvic acid, and sodium alginate, were employed to simulate membrane fouling. The results showed that micro-flocculation using poly aluminum chloride (PAC) or polymerized ferric sulfate (PFS) as flocculant could effectively enhance the treatment performance of the UF process on DOM. With 6 mg/L PAC, the removal efficiency of humic acid, fulvic acid, and sodium alginate by micro-flocculation combined UF process reached 79.95%, 63.25%, and 51.14%, respectively. Specifically, after micro-flocculation, micromolecular hydrophilic organic matter (e.g., fulvic acid) tended to form a compact cake layer. The macromolecular hydrophobic organic matter (e.g., humic acid) and macromolecular hydrophilic organic matter (e.g., sodium alginate) generally led to a loose cake layer. At PAC dosage of 6 mg/L, the membrane specific flux (J/J0) at the end was improved by 11.71%, 10.27%, and 2.2% for humic acid, sodium alginate and fulvic acid solutions, respectively, compared with the UF process alone. It could be inferred that micro-flocculation pretreatment can effectively mitigate the membrane fouling when treating wastewater containing humic acid, sodium alginate, or fulvic acid.","PeriodicalId":17556,"journal":{"name":"Journal of Water Reuse and Desalination","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Reuse and Desalination","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wrd.2021.051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 9
Abstract
This study investigated the efficacy of using micro-flocculation as a pretreatment approach in alleviating ultrafiltration (UF) membrane fouling caused by organic matter in treated wastewater. Three typical model dissolved organic matters (DOM), humic acid, fulvic acid, and sodium alginate, were employed to simulate membrane fouling. The results showed that micro-flocculation using poly aluminum chloride (PAC) or polymerized ferric sulfate (PFS) as flocculant could effectively enhance the treatment performance of the UF process on DOM. With 6 mg/L PAC, the removal efficiency of humic acid, fulvic acid, and sodium alginate by micro-flocculation combined UF process reached 79.95%, 63.25%, and 51.14%, respectively. Specifically, after micro-flocculation, micromolecular hydrophilic organic matter (e.g., fulvic acid) tended to form a compact cake layer. The macromolecular hydrophobic organic matter (e.g., humic acid) and macromolecular hydrophilic organic matter (e.g., sodium alginate) generally led to a loose cake layer. At PAC dosage of 6 mg/L, the membrane specific flux (J/J0) at the end was improved by 11.71%, 10.27%, and 2.2% for humic acid, sodium alginate and fulvic acid solutions, respectively, compared with the UF process alone. It could be inferred that micro-flocculation pretreatment can effectively mitigate the membrane fouling when treating wastewater containing humic acid, sodium alginate, or fulvic acid.
期刊介绍:
Journal of Water Reuse and Desalination publishes refereed review articles, theoretical and experimental research papers, new findings and issues of unplanned and planned reuse. The journal welcomes contributions from developing and developed countries.