Small Mars Mission Architecture Study

IF 1.6 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Advances in Astronomy Pub Date : 2021-06-10 DOI:10.1155/2021/5516892
C. Parfitt, A. McSweeney, L. De Backer, C. Orgel, A. Ball, Michael Khan, S. Vijendran
{"title":"Small Mars Mission Architecture Study","authors":"C. Parfitt, A. McSweeney, L. De Backer, C. Orgel, A. Ball, Michael Khan, S. Vijendran","doi":"10.1155/2021/5516892","DOIUrl":null,"url":null,"abstract":"While the vast majority of ESA’s funding for Mars exploration in the 2020s is planned to be invested in ExoMars and Mars Sample Return, there is an interest to assess the possibility of implementing a small mission to Mars in parallel with, or soon after, the completion of the MSR programme. A study was undertaken in the Concurrent Design Facility at ESA ESTEC to assess low-cost mission architectures for small satellite missions to Mars. Given strict programmatic constraints, the focus of the study was on a low-cost (<250MEuro Cost at Completion), short mission development schedule with a cost-driven spacecraft design and mission architecture. The study concluded that small, low-cost Mars missions are technically feasible for launch within the decade.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":"1-12"},"PeriodicalIF":1.6000,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2021/5516892","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

While the vast majority of ESA’s funding for Mars exploration in the 2020s is planned to be invested in ExoMars and Mars Sample Return, there is an interest to assess the possibility of implementing a small mission to Mars in parallel with, or soon after, the completion of the MSR programme. A study was undertaken in the Concurrent Design Facility at ESA ESTEC to assess low-cost mission architectures for small satellite missions to Mars. Given strict programmatic constraints, the focus of the study was on a low-cost (<250MEuro Cost at Completion), short mission development schedule with a cost-driven spacecraft design and mission architecture. The study concluded that small, low-cost Mars missions are technically feasible for launch within the decade.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小型火星任务架构研究
虽然欧空局在2020年代火星探测的绝大多数资金计划投资于ExoMars和火星样本返回,但有兴趣评估在MSR计划完成的同时或之后不久实施小型火星任务的可能性。欧空局ESTEC的并行设计设施进行了一项研究,以评估小型火星卫星任务的低成本任务架构。考虑到严格的方案限制,研究的重点是低成本(完工成本<250MEuro)、短任务开发时间表以及成本驱动的航天器设计和任务架构。该研究得出结论,小型、低成本的火星任务在十年内发射在技术上是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Astronomy
Advances in Astronomy ASTRONOMY & ASTROPHYSICS-
CiteScore
2.70
自引率
7.10%
发文量
10
审稿时长
22 weeks
期刊介绍: Advances in Astronomy publishes articles in all areas of astronomy, astrophysics, and cosmology. The journal accepts both observational and theoretical investigations into celestial objects and the wider universe, as well as the reports of new methods and instrumentation for their study.
期刊最新文献
A Study of the Early Cosmic Dynamics in a Multifield Model of Inflation and Curvature Perturbations Forecasting Ionospheric TEC Changes Associated with the December 2019 and June 2020 Solar Eclipses: A Comparative Analysis of OKSM, FFNN, and DeepAR Models Measuring Track-Related Pointing Errors on the Nanshan Radio Telescope with an Optical Pointing Telescope Tracking and Disturbance Suppression of the Radio Telescope Servo System Based on the Equivalent-Input-Disturbance Approach Dark Energy from Cosmological Energy Conservation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1