Temperature and thermal stress analysis of ultrashort laser processed glass

Q1 Physics and Astronomy Journal of Non-Crystalline Solids: X Pub Date : 2022-12-01 DOI:10.1016/j.nocx.2022.100124
Jingshi Wu , Aram Rezikyan , Matthew R. Ross , Peter J. Lezzi , Jian Luo , Anping Liu
{"title":"Temperature and thermal stress analysis of ultrashort laser processed glass","authors":"Jingshi Wu ,&nbsp;Aram Rezikyan ,&nbsp;Matthew R. Ross ,&nbsp;Peter J. Lezzi ,&nbsp;Jian Luo ,&nbsp;Anping Liu","doi":"10.1016/j.nocx.2022.100124","DOIUrl":null,"url":null,"abstract":"<div><p>When glass absorbs high energy from ultrashort-pulsed lasers, a very rapid melting-cooling event occurs. Images taken by a Scanning Electron Microscope (SEM) reveal a surface feature which elucidates the glass is heated to above 2000 °C. A series of voids along the laser path is also observed and analyzed by SEM and High-angle Annular Dark-filed Scanning Transmission Electron Microscopy (HAADF-STEM). Molecular Dynamic simulation predicting observable voids in fused silica glass requires the temperature to be above 10,000 Kelvin. This suggests that the thermal effect from nonlinear absorption along cannot explain the void generation. Thermal stress analysis based on three different types of glasses revealed that stress generated by laser heating is highly correlated to thermal expansion coefficient. Such thermal stress may be a key factor for laser cutting.</p></div>","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"16 ","pages":"Article 100124"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590159122000449/pdfft?md5=9cf67958840597582bf67f1c3b33baff&pid=1-s2.0-S2590159122000449-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Crystalline Solids: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590159122000449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

When glass absorbs high energy from ultrashort-pulsed lasers, a very rapid melting-cooling event occurs. Images taken by a Scanning Electron Microscope (SEM) reveal a surface feature which elucidates the glass is heated to above 2000 °C. A series of voids along the laser path is also observed and analyzed by SEM and High-angle Annular Dark-filed Scanning Transmission Electron Microscopy (HAADF-STEM). Molecular Dynamic simulation predicting observable voids in fused silica glass requires the temperature to be above 10,000 Kelvin. This suggests that the thermal effect from nonlinear absorption along cannot explain the void generation. Thermal stress analysis based on three different types of glasses revealed that stress generated by laser heating is highly correlated to thermal expansion coefficient. Such thermal stress may be a key factor for laser cutting.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超短激光加工玻璃的温度和热应力分析
当玻璃从超短脉冲激光中吸收高能量时,发生了非常迅速的熔化冷却事件。扫描电子显微镜(SEM)拍摄的图像显示了玻璃被加热到2000°C以上的表面特征。利用扫描电子显微镜(SEM)和高角环形暗场扫描透射电子显微镜(HAADF-STEM)对激光路径上的一系列空洞进行了观察和分析。分子动力学模拟预测熔融石英玻璃中可观察到的空隙需要温度高于10,000开尔文。这表明非线性吸收的热效应不能解释空洞的产生。基于三种不同类型玻璃的热应力分析表明,激光加热产生的应力与热膨胀系数高度相关。这种热应力可能是激光切割的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Non-Crystalline Solids: X
Journal of Non-Crystalline Solids: X Materials Science-Materials Chemistry
CiteScore
3.20
自引率
0.00%
发文量
50
审稿时长
76 days
期刊最新文献
Editorial Board Preface Preface Altering the optical, physical, and TL Dosimetric properties of MgSO4:Dy2O3:B2O3 transparent glass ceramic system: Evaluating the impact of roughness control and ZnO inclusion Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1