On determination of the number of factors in an approximate factor model

IF 0.7 4区 经济学 Q3 ECONOMICS Studies in Nonlinear Dynamics and Econometrics Pub Date : 2022-10-03 DOI:10.1515/snde-2020-0055
Jinshan Liu, Jiazhu Pan, Qiang Xia, Li Xiao
{"title":"On determination of the number of factors in an approximate factor model","authors":"Jinshan Liu, Jiazhu Pan, Qiang Xia, Li Xiao","doi":"10.1515/snde-2020-0055","DOIUrl":null,"url":null,"abstract":"Abstract This paper proposes a ridge-type method for determining the number of factors in an approximate factor model. The new estimator of factor number is obtained by maximizing both the ratio of two adjacent eigenvalues and the cumulative contribution rate of the factors which represents the explanatory power of the common factors for response variables. Our estimator is proved to be as asymptotically consistent as those in (Ahn, S., and A. Horenstein. 2013. “Eigenvalue Ratio Test for the Number of Factors.” Econometrica 81: 1203–27). But Monte Carlo simulation experiments show our method has better correct selection rates in finite sample cases. A real data example is given for illustration.","PeriodicalId":46709,"journal":{"name":"Studies in Nonlinear Dynamics and Econometrics","volume":"27 1","pages":"285 - 298"},"PeriodicalIF":0.7000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics and Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1515/snde-2020-0055","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper proposes a ridge-type method for determining the number of factors in an approximate factor model. The new estimator of factor number is obtained by maximizing both the ratio of two adjacent eigenvalues and the cumulative contribution rate of the factors which represents the explanatory power of the common factors for response variables. Our estimator is proved to be as asymptotically consistent as those in (Ahn, S., and A. Horenstein. 2013. “Eigenvalue Ratio Test for the Number of Factors.” Econometrica 81: 1203–27). But Monte Carlo simulation experiments show our method has better correct selection rates in finite sample cases. A real data example is given for illustration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于近似因子模型中因子数量的确定
摘要本文提出了一种确定近似因子模型中因子数量的岭型方法。因子数的新估计量是通过最大化两个相邻特征值的比率和表示公共因子对响应变量的解释力的因子的累积贡献率来获得的。我们的估计量被证明与(Ahn,S.,and A.Horenstein.2013)中的估计量一样渐近一致。“因素数量的特征值比率检验”,计量经济学81:1203-27)。但蒙特卡罗模拟实验表明,在有限样本情况下,我们的方法具有更好的正确选择率。文中给出了一个实际数据实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
34
期刊介绍: Studies in Nonlinear Dynamics & Econometrics (SNDE) recognizes that advances in statistics and dynamical systems theory may increase our understanding of economic and financial markets. The journal seeks both theoretical and applied papers that characterize and motivate nonlinear phenomena. Researchers are required to assist replication of empirical results by providing copies of data and programs online. Algorithms and rapid communications are also published.
期刊最新文献
Zero-Inflated Autoregressive Conditional Duration Model for Discrete Trade Durations with Excessive Zeros Stability in Threshold VAR Models Co-Jumping of Treasury Yield Curve Rates Determination of the Number of Breaks in High-Dimensional Factor Models via Cross-Validation Comparison of Score-Driven Equity-Gold Portfolios During the COVID-19 Pandemic Using Model Confidence Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1