Feature subset selection in structural health monitoring data using an advanced binary slime mould algorithm

Ramin Ghiasi, A. Malekjafarian
{"title":"Feature subset selection in structural health monitoring data using an advanced binary slime mould algorithm","authors":"Ramin Ghiasi, A. Malekjafarian","doi":"10.1080/24705314.2023.2230398","DOIUrl":null,"url":null,"abstract":"ABSTRACT Feature Selection (FS) is an important step in data-driven structural health monitoring approaches. In this paper, an Advanced version of the Binary Slime Mould Algorithm (ABSMA) is introduced for feature subset selection to improve the performance of structural damage classification techniques. Two operators of mutation and crossover are embedded to the algorithm, to overcome the stagnation situation involved in the Binary Slime Mould Algorithm (BSMA). The proposed ABSMA is then embedded in a new data-driven SHM framework which consists of three main steps. In the first step, structural time domain responses are collected and pre-processed to extract the statistical features. In the second step, the order of the extracted features is reduced using an optimization algorithm to find a minimal subset of salient features by removing irrelevant, and redundant data. Finally, the optimized feature vectors are used as inputs to Neural Network (NN) based classification models. Benchmark datasets of a timber bridge model and a three-story frame structure are employed to validate the proposed algorithm. The results show that the proposed ABSMA provides a better performance and convergence rate compared to other commonly used binary optimization algorithms.","PeriodicalId":43844,"journal":{"name":"Journal of Structural Integrity and Maintenance","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Integrity and Maintenance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24705314.2023.2230398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Feature Selection (FS) is an important step in data-driven structural health monitoring approaches. In this paper, an Advanced version of the Binary Slime Mould Algorithm (ABSMA) is introduced for feature subset selection to improve the performance of structural damage classification techniques. Two operators of mutation and crossover are embedded to the algorithm, to overcome the stagnation situation involved in the Binary Slime Mould Algorithm (BSMA). The proposed ABSMA is then embedded in a new data-driven SHM framework which consists of three main steps. In the first step, structural time domain responses are collected and pre-processed to extract the statistical features. In the second step, the order of the extracted features is reduced using an optimization algorithm to find a minimal subset of salient features by removing irrelevant, and redundant data. Finally, the optimized feature vectors are used as inputs to Neural Network (NN) based classification models. Benchmark datasets of a timber bridge model and a three-story frame structure are employed to validate the proposed algorithm. The results show that the proposed ABSMA provides a better performance and convergence rate compared to other commonly used binary optimization algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于二元黏菌算法的结构健康监测数据特征子集选择
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
9.50%
发文量
24
期刊最新文献
Influential factor analysis of slag-based engineered cementitious composites using Taguchi robust method Influence of corrosion-based section loss on morphology and tensile capacity of pre-stressing strands Application of electrical resistivity for estimating compressive strength of FRC at early-ages Evaluation and optimization of volume fraction and aspect ratio of Polyethylene Terephthalate (PET) fibers in self-compacting lightweight concrete Vulnerability assessment of tall isolated steel building under variable earthquake hazard levels using endurance time method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1