A new upscaling method for microscopic fluid flow based on digital rocks

IF 9 1区 地球科学 Q1 ENERGY & FUELS Advances in Geo-Energy Research Pub Date : 2022-06-24 DOI:10.46690/ager.2022.04.10
Q. Liao, L. Xue, Bin Wang, Gang Lei
{"title":"A new upscaling method for microscopic fluid flow based on digital rocks","authors":"Q. Liao, L. Xue, Bin Wang, Gang Lei","doi":"10.46690/ager.2022.04.10","DOIUrl":null,"url":null,"abstract":": This report presents our new findings in microscopic fluid flow based on digital rocks. Permeability of digital rocks can be estimated by pore-scale simulations using the Stokes equation, but the computational cost can be extremely high due to the complicated pore geometry and the large number of voxels. In this study, a novel method is proposed to simplify the three-dimensional pore-scale simulation to multiple decoupled two-dimensional ones, and each two-dimensional simulation provides the velocity distribution over a slice. By this decoupled simulation approach, the expensive simulation based on the Stokes equation is conducted only on two-dimensional domains, and the final three-dimensional simulation of Darcy equation using the finite difference method is very cheap. The proposed method is validated by both sandstone and carbonate rock samples and shows significant enhancement in the computational speed. This work sheds light on large-scale microscopic fluid flow based on digital rocks.","PeriodicalId":36335,"journal":{"name":"Advances in Geo-Energy Research","volume":" ","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geo-Energy Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46690/ager.2022.04.10","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 6

Abstract

: This report presents our new findings in microscopic fluid flow based on digital rocks. Permeability of digital rocks can be estimated by pore-scale simulations using the Stokes equation, but the computational cost can be extremely high due to the complicated pore geometry and the large number of voxels. In this study, a novel method is proposed to simplify the three-dimensional pore-scale simulation to multiple decoupled two-dimensional ones, and each two-dimensional simulation provides the velocity distribution over a slice. By this decoupled simulation approach, the expensive simulation based on the Stokes equation is conducted only on two-dimensional domains, and the final three-dimensional simulation of Darcy equation using the finite difference method is very cheap. The proposed method is validated by both sandstone and carbonate rock samples and shows significant enhancement in the computational speed. This work sheds light on large-scale microscopic fluid flow based on digital rocks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的基于数字岩石的微观流体流动放大方法
:本报告介绍了我们在基于数字岩石的微观流体流动方面的新发现。数字岩石的渗透率可以通过使用斯托克斯方程的孔隙尺度模拟来估计,但由于复杂的孔隙几何形状和大量的体素,计算成本可能极高。在这项研究中,提出了一种新的方法,将三维孔隙尺度模拟简化为多个解耦的二维模拟,每个二维模拟都提供了切片上的速度分布。通过这种解耦模拟方法,基于Stokes方程的昂贵模拟仅在二维域上进行,而使用有限差分方法对Darcy方程的最终三维模拟非常便宜。所提出的方法通过砂岩和碳酸盐岩样本进行了验证,并显示出计算速度的显著提高。这项工作揭示了基于数字岩石的大规模微观流体流动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Geo-Energy Research
Advances in Geo-Energy Research natural geo-energy (oil, gas, coal geothermal, and gas hydrate)-Geotechnical Engineering and Engineering Geology
CiteScore
12.30
自引率
8.50%
发文量
63
审稿时长
2~3 weeks
期刊介绍: Advances in Geo-Energy Research is an interdisciplinary and international periodical committed to fostering interaction and multidisciplinary collaboration among scientific communities worldwide, spanning both industry and academia. Our journal serves as a platform for researchers actively engaged in the diverse fields of geo-energy systems, providing an academic medium for the exchange of knowledge and ideas. Join us in advancing the frontiers of geo-energy research through collaboration and shared expertise.
期刊最新文献
Characterization and capillary pressure curve estimation of clayey-silt sediment in gas hydrate reservoirs of the South China Sea Enhanced oil recovery in complex reservoirs: Challenges and methods Feasibility analysis of storing solar energy in heterogeneous deep aquifer by hot water circulation: Insights from coupled hydro-thermo modeling Study on the mechanism of surfactant flooding: Effect of betaine structure Numerical modeling of micro-particle migration in channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1