Baeyer–Villiger Monooxygenases (BVMOs) as Biocatalysts

IF 2 Q2 CHEMISTRY, ORGANIC SynOpen Pub Date : 2022-08-17 DOI:10.1055/s-0042-1751359
P. Chawla, Chandrakant Sahu
{"title":"Baeyer–Villiger Monooxygenases (BVMOs) as Biocatalysts","authors":"P. Chawla, Chandrakant Sahu","doi":"10.1055/s-0042-1751359","DOIUrl":null,"url":null,"abstract":"Natural or artificial enzymes are used in biocatalytic processes to produce high-value fine chemicals, most notably chiral pharmaceutical intermediates. On the other hand, there are few instances of the enzymatic production of bulk compounds.1 In particular production of polymer precursors such as -caprolactone, currently obtained from cyclohexanone utilizing peracetic acid; where Baeyer–Villiger monooxygenases (BVMOs) are potential alternative catalysts to carry out the reaction under much milder conditions.2 Bulk manufacturing of feedstock chemicals utilizing biocatalysts such as BVMO has yet to be accomplished due to a number of reasons.3 The versatility of BVMOs is highlighted in this Spotlight, along with various instances of how protein engineering has been employed to circumvent some of the disadvantages of BVMO use. BVMOs are flavin-reliant enzymes that utilize molecular oxygen and NAD(P)H to catalyze a number of oxidation processes, including Baeyer–Villiger oxidations (Table 1).4,5 The genes to encode them were discovered at the beginning of this century.6 Even though the biochemical reason for the retention of these residues was unclear until recently, the sequence pattern has shown to be quite useful for mining genomes for new BVMOs.7 Although the genomes of higher animals and plants do not include any type I BVMOs, bacteria are rich in BVMOs, with one BVMO per genome on average.8 These enzymes are notably common among the Actinomycetes, making them an intriguing source of new BVMOs.9 Fungal genomes are also rather rich in BVMOs but have not yet been fully investigated.10 The crucial functions that BVMOs play in microbial metabolic pathways have recently been confirmed by investigations on the biotransformation of natural compounds.11–13","PeriodicalId":22135,"journal":{"name":"SynOpen","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SynOpen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0042-1751359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Natural or artificial enzymes are used in biocatalytic processes to produce high-value fine chemicals, most notably chiral pharmaceutical intermediates. On the other hand, there are few instances of the enzymatic production of bulk compounds.1 In particular production of polymer precursors such as -caprolactone, currently obtained from cyclohexanone utilizing peracetic acid; where Baeyer–Villiger monooxygenases (BVMOs) are potential alternative catalysts to carry out the reaction under much milder conditions.2 Bulk manufacturing of feedstock chemicals utilizing biocatalysts such as BVMO has yet to be accomplished due to a number of reasons.3 The versatility of BVMOs is highlighted in this Spotlight, along with various instances of how protein engineering has been employed to circumvent some of the disadvantages of BVMO use. BVMOs are flavin-reliant enzymes that utilize molecular oxygen and NAD(P)H to catalyze a number of oxidation processes, including Baeyer–Villiger oxidations (Table 1).4,5 The genes to encode them were discovered at the beginning of this century.6 Even though the biochemical reason for the retention of these residues was unclear until recently, the sequence pattern has shown to be quite useful for mining genomes for new BVMOs.7 Although the genomes of higher animals and plants do not include any type I BVMOs, bacteria are rich in BVMOs, with one BVMO per genome on average.8 These enzymes are notably common among the Actinomycetes, making them an intriguing source of new BVMOs.9 Fungal genomes are also rather rich in BVMOs but have not yet been fully investigated.10 The crucial functions that BVMOs play in microbial metabolic pathways have recently been confirmed by investigations on the biotransformation of natural compounds.11–13
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Baeyer-Villiger单加氧酶(BVMOs)作为生物催化剂
天然或人工酶用于生物催化过程,以生产高价值的精细化学品,尤其是手性药物中间体。另一方面,酶促生产大宗化合物的情况很少。1特别是生产聚合物前体,如-己内酯,目前利用过乙酸从环己酮获得;其中Baeyer–Villiger单加氧酶(BVMO)是在温和得多的条件下进行反应的潜在替代催化剂。2由于多种原因,利用生物催化剂(如BVMO)批量生产原料化学品尚未完成。3本聚光灯强调了BVMO的多功能性,以及如何利用蛋白质工程来规避BVMO使用的一些缺点的各种实例。BVMO是依赖黄素的酶,利用分子氧和NAD(P)H催化许多氧化过程,包括Baeyer–Villiger氧化(表1)。4,5编码它们的基因是在本世纪初发现的。6尽管直到最近,这些残基保留的生化原因尚不清楚,序列模式已被证明对挖掘新BVMO的基因组非常有用。7尽管高等动物和植物的基因组不包括任何I型BVMO,但细菌富含BVMO,平均每个基因组有一个BVMO。8这些酶在放线菌中特别常见,使其成为新BVMO的有趣来源。9真菌基因组中也富含BVMO,但尚未得到充分研究。10 BVMO在微生物代谢途径中发挥的关键功能最近已通过对天然化合物生物转化的研究得到证实。11-13
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SynOpen
SynOpen CHEMISTRY, ORGANIC-
CiteScore
2.30
自引率
4.00%
发文量
35
审稿时长
6 weeks
期刊最新文献
Synthesis of 5-(4-Formylphenyl)barbituric Acid to Access Enolizable Chromophoric Barbituric Acids A Review of Recent Progress on the Anticancer Activity of Heterocyclic Compounds Exploring Porphyrins, Phthalocyanines and Corroles as Photocatalysts for Organic Transformations Microwave-Assisted Synthesis of Heterocyclic Scaffolds Functionalization of Position 7 of Pyrazolo[1,5-a]pyrazines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1