FoilTrack: a package to increase strain-resolution by improved X-radiographic image processing

IF 1.2 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY High Pressure Research Pub Date : 2023-08-23 DOI:10.1080/08957959.2023.2247542
S. Hunt
{"title":"FoilTrack: a package to increase strain-resolution by improved X-radiographic image processing","authors":"S. Hunt","doi":"10.1080/08957959.2023.2247542","DOIUrl":null,"url":null,"abstract":"ABSTRACT In high pressure multi-anvil experiments X-radiography is used to ascertain strain in deforming samples because the tooling prevents optical or other direct observations of the sample. The processing of these X-radiographic images to determine bulk sample strain is one of the limiting factors to making measurements closer to the strains and strain-rates that occur during mantle convection or the passage of seismic waves. Typically, sample deformation in these experiments is tracked by the displacement of high-contrast marker foils in X-radiographs. X-radiographs are treated individually or pairwise in a multi-step process that tracks the displacement of marker foils during experiments. Here I develop a new algorithm, FoilTrack, that treats all the X-radiographic observations in a single-step process, resulting in improved accuracy and consistency of length changes determined from X-radiographic images, as well as providing more realistic parameter uncertainty. The improvements are demonstrated using data from small-strain sinusoidal deformation experiments.","PeriodicalId":12864,"journal":{"name":"High Pressure Research","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Pressure Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/08957959.2023.2247542","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT In high pressure multi-anvil experiments X-radiography is used to ascertain strain in deforming samples because the tooling prevents optical or other direct observations of the sample. The processing of these X-radiographic images to determine bulk sample strain is one of the limiting factors to making measurements closer to the strains and strain-rates that occur during mantle convection or the passage of seismic waves. Typically, sample deformation in these experiments is tracked by the displacement of high-contrast marker foils in X-radiographs. X-radiographs are treated individually or pairwise in a multi-step process that tracks the displacement of marker foils during experiments. Here I develop a new algorithm, FoilTrack, that treats all the X-radiographic observations in a single-step process, resulting in improved accuracy and consistency of length changes determined from X-radiographic images, as well as providing more realistic parameter uncertainty. The improvements are demonstrated using data from small-strain sinusoidal deformation experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FoilTrack:通过改进X射线图像处理来提高应变分辨率的软件包
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
High Pressure Research
High Pressure Research 物理-物理:综合
CiteScore
3.80
自引率
5.00%
发文量
15
审稿时长
2 months
期刊介绍: High Pressure Research is the leading journal for research in high pressure science and technology. The journal publishes original full-length papers and short research reports of new developments, as well as timely review articles. It provides an important forum for the presentation of experimental and theoretical advances in high pressure science in subjects such as: condensed matter physics and chemistry geophysics and planetary physics synthesis of new materials chemical kinetics under high pressure industrial applications shockwaves in condensed matter instrumentation and techniques the application of pressure to food / biomaterials Theoretical papers of exceptionally high quality are also accepted.
期刊最新文献
Advanced X-ray absorption spectroscopy under high pressures at the ESRF beamline ID12 In situ X-ray absorption spectroscopy using the FAME autoclave: a window into fluid-mineral-melt interactions in the Earth’s crust Science under extreme conditions at the ESRF Extremely Brilliant Source Dynamic loading platforms coupled to ultra-high speed X-ray imaging at beamline ID19 of the European Synchrotron ESRF Nuclear resonance techniques for high-pressure research: example of the ID18 beamline of the European Synchrotron Radiation Facility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1