A Quantum Algorithm for Model-Independent Searches for New Physics

Q2 Physics and Astronomy Letters in High Energy Physics Pub Date : 2020-03-04 DOI:10.31526/lhep.2023.301
Konstantin T. Matchev, Prasanth Shyamsundar, Jordan Smolinsky
{"title":"A Quantum Algorithm for Model-Independent Searches for New Physics","authors":"Konstantin T. Matchev, Prasanth Shyamsundar, Jordan Smolinsky","doi":"10.31526/lhep.2023.301","DOIUrl":null,"url":null,"abstract":"We propose a novel quantum technique to search for unmodelled anomalies in multi-dimensional binned collider data. We propose to associate an Ising lattice spin site with each bin, with the Ising Hamiltonian suitably constructed from the observed data and a corresponding theoretical expectation. In order to capture spatially correlated anomalies in the data, we introduce spin-spin interactions between neighboring sites, as well as self-interactions. The ground state energy of the resulting Ising Hamiltonian can be used as a new test statistic, which can be computed either classically or via adiabatic quantum optimization. We demonstrate that our test statistic outperforms some of the most commonly used goodness-of-fit tests. The new approach greatly reduces the look-elsewhere effect by exploiting the typical differences between statistical noise and genuine new physics signals.","PeriodicalId":36085,"journal":{"name":"Letters in High Energy Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in High Energy Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31526/lhep.2023.301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 12

Abstract

We propose a novel quantum technique to search for unmodelled anomalies in multi-dimensional binned collider data. We propose to associate an Ising lattice spin site with each bin, with the Ising Hamiltonian suitably constructed from the observed data and a corresponding theoretical expectation. In order to capture spatially correlated anomalies in the data, we introduce spin-spin interactions between neighboring sites, as well as self-interactions. The ground state energy of the resulting Ising Hamiltonian can be used as a new test statistic, which can be computed either classically or via adiabatic quantum optimization. We demonstrate that our test statistic outperforms some of the most commonly used goodness-of-fit tests. The new approach greatly reduces the look-elsewhere effect by exploiting the typical differences between statistical noise and genuine new physics signals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于新物理模型无关搜索的量子算法
我们提出了一种新的量子技术来搜索多维箱形对撞机数据中的未建模异常。我们建议将每个仓关联一个伊辛晶格自旋位,并根据观测数据和相应的理论期望构建合适的伊辛哈密顿量。为了捕获数据中的空间相关异常,我们引入了相邻位点之间的自旋-自旋相互作用以及自相互作用。由此得到的伊辛哈密顿量的基态能量可以作为一种新的检验统计量,它既可以用经典方法计算,也可以用绝热量子优化方法计算。我们证明,我们的检验统计量优于一些最常用的拟合优度检验。新方法通过利用统计噪声和真正的新物理信号之间的典型差异,大大减少了“别处效应”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Letters in High Energy Physics
Letters in High Energy Physics Physics and Astronomy-Nuclear and High Energy Physics
CiteScore
1.20
自引率
0.00%
发文量
4
审稿时长
12 weeks
期刊最新文献
Composite Effective Field Theory Signal from Anomalous QuarticGauge Couplings forZZ(→ℓℓνν)jjandZγ(→ννγ)jjProductions A New 700GeV Scalar in the LHC Data? Summary of CMS Higgs Physics Domain Walls in the A 4 flavored NMSSM On the Status of Wormholes in Einstein’s Theory: An Overview
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1