Efficient galaxy classification through pretraining

IF 2.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Frontiers in Astronomy and Space Sciences Pub Date : 2023-08-10 DOI:10.3389/fspas.2023.1197358
Jesse Schneider, D. Stenning, L. Elliott
{"title":"Efficient galaxy classification through pretraining","authors":"Jesse Schneider, D. Stenning, L. Elliott","doi":"10.3389/fspas.2023.1197358","DOIUrl":null,"url":null,"abstract":"Deep learning has increasingly been applied to supervised learning tasks in astronomy, such as classifying images of galaxies based on their apparent shape (i.e., galaxy morphology classification) to gain insight regarding the evolution of galaxies. In this work, we examine the effect of pretraining on the performance of the classical AlexNet convolutional neural network (CNN) in classifying images of 14,034 galaxies from the Sloan Digital Sky Survey Data Release 4. Pretraining involves designing and training CNNs on large labeled image datasets unrelated to astronomy, which takes advantage of the vast amounts of such data available compared to the relatively small amount of labeled galaxy images. We show a statistically significant benefit of using pretraining, both in terms of improved overall classification success and reduced computational cost to achieve such performance.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Astronomy and Space Sciences","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3389/fspas.2023.1197358","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning has increasingly been applied to supervised learning tasks in astronomy, such as classifying images of galaxies based on their apparent shape (i.e., galaxy morphology classification) to gain insight regarding the evolution of galaxies. In this work, we examine the effect of pretraining on the performance of the classical AlexNet convolutional neural network (CNN) in classifying images of 14,034 galaxies from the Sloan Digital Sky Survey Data Release 4. Pretraining involves designing and training CNNs on large labeled image datasets unrelated to astronomy, which takes advantage of the vast amounts of such data available compared to the relatively small amount of labeled galaxy images. We show a statistically significant benefit of using pretraining, both in terms of improved overall classification success and reduced computational cost to achieve such performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过预训练进行有效的星系分类
深度学习越来越多地应用于天文学中的监督学习任务,例如根据星系的表观形状对其图像进行分类(即星系形态分类),以深入了解星系的演化。在这项工作中,我们研究了预训练对经典AlexNet卷积神经网络(CNN)在对斯隆数字巡天数据发布4中的14034个星系的图像进行分类时的性能的影响。预训练涉及在与天文学无关的大型标记图像数据集上设计和训练细胞神经网络,与相对少量的标记星系图像相比,这利用了大量可用的此类数据。我们展示了使用预训练在统计上的显著优势,无论是在提高总体分类成功率方面,还是在降低计算成本以实现这种性能方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Astronomy and Space Sciences
Frontiers in Astronomy and Space Sciences ASTRONOMY & ASTROPHYSICS-
CiteScore
3.40
自引率
13.30%
发文量
363
审稿时长
14 weeks
期刊最新文献
Application of collisional analysis to the differential velocity of solar wind ions Sun-as-a-star variability of Hα and Ca II 854.2 nm lines Coherence of Elsässer Variables in the slow solar wind from 0.1 au to 0.3 au Forecasting solar flares with a transformer network Ultra-broadband infrared metamaterial absorber based on MDMDM structure for optical sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1