Tellurite-filled hexa-circular-shaped PCF with highly nonlinearity, birefringent and near-zero dispersion profile for optical communications

IF 1 4区 材料科学 Journal of Ovonic Research Pub Date : 2022-07-31 DOI:10.15251/jor.2022.184.527
Md. S. Hasan Sohag, K. H. Kabir
{"title":"Tellurite-filled hexa-circular-shaped PCF with highly nonlinearity, birefringent and near-zero dispersion profile for optical communications","authors":"Md. S. Hasan Sohag, K. H. Kabir","doi":"10.15251/jor.2022.184.527","DOIUrl":null,"url":null,"abstract":"This manuscript focuses on devising a Tellurite-filled circular-timbered PCF that shows considerably highly birefringent and nonlinear characteristics. The impacts of numerous design parameters, such as birefringence (Br), nonlinear coefficients (NLC), confinement loss (CL), effective mode area (EMA), dispersion, numerical aperture (NA), etc. of the fiber are extensively inspected employing the commercially accessible and simulation- friendly COMSOL Software. Besides, the pertinent modal properties of the modeled fiber are rigorously characterized by operating the full-vector finite element method (FEM) with a perfectly matched layer (PML) boundary condition. The simulated findings affirm that the developed fiber exemplifies an ultra-high Br and NLC of 0.0924 and 18900 W-1Km-1 consecutively, at the operational wavelength of 1.55μm. Notably, the offered PCF also reveals a relatively lower CL, a negative-sloping dispersion and a higher EMA at the same wavelength. The pragmatic execution of the modeled fiber is expected to be doable applying the existing fabrication approaches and it can be applied in miscellaneous identical optical domains, namely polarization retention in long-distance communications, optical switching, sensor and laser layout, supercontinuum generation for frequency metrology and so forth.","PeriodicalId":54394,"journal":{"name":"Journal of Ovonic Research","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovonic Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/jor.2022.184.527","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This manuscript focuses on devising a Tellurite-filled circular-timbered PCF that shows considerably highly birefringent and nonlinear characteristics. The impacts of numerous design parameters, such as birefringence (Br), nonlinear coefficients (NLC), confinement loss (CL), effective mode area (EMA), dispersion, numerical aperture (NA), etc. of the fiber are extensively inspected employing the commercially accessible and simulation- friendly COMSOL Software. Besides, the pertinent modal properties of the modeled fiber are rigorously characterized by operating the full-vector finite element method (FEM) with a perfectly matched layer (PML) boundary condition. The simulated findings affirm that the developed fiber exemplifies an ultra-high Br and NLC of 0.0924 and 18900 W-1Km-1 consecutively, at the operational wavelength of 1.55μm. Notably, the offered PCF also reveals a relatively lower CL, a negative-sloping dispersion and a higher EMA at the same wavelength. The pragmatic execution of the modeled fiber is expected to be doable applying the existing fabrication approaches and it can be applied in miscellaneous identical optical domains, namely polarization retention in long-distance communications, optical switching, sensor and laser layout, supercontinuum generation for frequency metrology and so forth.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有高非线性、双折射和近零色散特性的六圆型碲酸盐填充PCF光通信
本文的重点是设计一种Tellurite填充的圆形木结构PCF,该PCF显示出相当高的双折射和非线性特性。采用商业上可访问且模拟友好的COMSOL软件,对光纤的双折射(Br)、非线性系数(NLC)、约束损耗(CL)、有效模面积(EMA)、色散、数值孔径(NA)等众多设计参数的影响进行了广泛的检查。此外,通过在完全匹配层(PML)边界条件下操作全矢量有限元法(FEM),对建模纤维的相关模态特性进行了严格表征。模拟结果证实,所开发的光纤在1.55μm的工作波长下连续表现出0.0924和18900 W-1Km-1的超高Br和NLC。值得注意的是,所提供的PCF在相同波长下也表现出相对较低的CL、负倾斜色散和较高的EMA。应用现有的制造方法,建模光纤的实际执行是可行的,它可以应用于各种相同的光学领域,即远距离通信中的偏振保持、光学开关、传感器和激光器布局、频率计量的超连续谱生成等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Ovonic Research
Journal of Ovonic Research Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
1.60
自引率
20.00%
发文量
77
期刊介绍: Journal of Ovonic Research (JOR) appears with six issues per year and is open to the reviews, papers, short communications and breakings news inserted as Short Notes, in the field of ovonic (mainly chalcogenide) materials for memories, smart materials based on ovonic materials (combinations of various elements including chalcogenides), materials with nano-structures based on various alloys, as well as semiconducting materials and alloys based on amorphous silicon, germanium, carbon in their various nanostructured forms, either simple or doped/alloyed with hydrogen, fluorine, chlorine and other elements of high interest for applications in electronics and optoelectronics. Papers on minerals with possible applications in electronics and optoelectronics are encouraged.
期刊最新文献
Modified nonlinear ion drift model for TiO2 memristor: a temperature dependent study Electrochemical performance of rice grains like high Mn-doped anatase TiO2 nanoparticles as lithium-ion batteries electrode material Probing optoelectronic and thermoelectric properties of double perovskite halides Li2CuInY6 (Y = Cl, Br, I) for energy conversion applications Absorber layer improvement and performance analysis of CIGS thin-film solar cell Investigations on synthesis, growth and characterisations of a NLO material: L-Tryptophanium phosphite (LTP)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1