Numerical models for shallow foundation on soft clay reinforced with a group of stone columns

A. Hanna, M. Khalifa
{"title":"Numerical models for shallow foundation on soft clay reinforced with a group of stone columns","authors":"A. Hanna, M. Khalifa","doi":"10.1080/17486025.2022.2046873","DOIUrl":null,"url":null,"abstract":"ABSTRACT Stone columns are widely used around the world as cost-effective soil improvement techniques for highways and embankments. They are also used as drainage to expedite the consolidation period, and accordingly to increase the allowable pressure, reduce settlement, and reduce the liquefaction potential for shallow foundations. Currently the design of these columns is based on the unit cell or homogenised material concepts, which neglect the effect of the interaction of the columns. This paper presents a 3-D numerical model using the finite element technique and the commercial software ‘ABAQUS’ to simulate the case of a group of stone columns installed in soft clay. The model is capable of capturing the interaction between columns and the surrounding soil and of establishing the mode of failure of the system. After validating the model with the available experimental results, it was used to predict the allowable pressure and the failure mechanism of groups of stone columns for given geometry/soil conditions. An improvement factor was introduced ‘IF’, which is defined as the ratio of the capacity of the improved to the unimproved soft clay. The results of this investigation are presented in the form of design charts to assist the engineer to determine the level of improvement needed to achieve a given allowable pressure for the foundation.","PeriodicalId":46470,"journal":{"name":"Geomechanics and Geoengineering-An International Journal","volume":"18 1","pages":"309 - 320"},"PeriodicalIF":1.7000,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Geoengineering-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17486025.2022.2046873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT Stone columns are widely used around the world as cost-effective soil improvement techniques for highways and embankments. They are also used as drainage to expedite the consolidation period, and accordingly to increase the allowable pressure, reduce settlement, and reduce the liquefaction potential for shallow foundations. Currently the design of these columns is based on the unit cell or homogenised material concepts, which neglect the effect of the interaction of the columns. This paper presents a 3-D numerical model using the finite element technique and the commercial software ‘ABAQUS’ to simulate the case of a group of stone columns installed in soft clay. The model is capable of capturing the interaction between columns and the surrounding soil and of establishing the mode of failure of the system. After validating the model with the available experimental results, it was used to predict the allowable pressure and the failure mechanism of groups of stone columns for given geometry/soil conditions. An improvement factor was introduced ‘IF’, which is defined as the ratio of the capacity of the improved to the unimproved soft clay. The results of this investigation are presented in the form of design charts to assist the engineer to determine the level of improvement needed to achieve a given allowable pressure for the foundation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
石柱群加筋软土浅基础数值模型
石柱作为一种经济有效的土壤改良技术在世界范围内广泛应用于公路和路堤。它们还用作排水,以加快固结期,从而增加许用压力,减少沉降,降低浅基础的液化潜力。目前,这些柱的设计是基于单元格或均质材料的概念,忽视了柱的相互作用的影响。本文采用有限元技术和商业软件ABAQUS建立了一组石柱安装在软粘土中的三维数值模型。该模型能够捕捉柱与周围土体的相互作用,并建立系统的破坏模式。将该模型与已有的试验结果进行验证后,用于预测给定几何/土壤条件下石柱群的许用压力和破坏机制。引入了改良系数IF,即改良软土与未改良软土的承载力之比。本次调查的结果以设计图的形式呈现,以帮助工程师确定为达到给定的基础允许压力所需的改进水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
27
期刊介绍: Geomechanics is concerned with the application of the principle of mechanics to earth-materials (namely geo-material). Geoengineering covers a wide range of engineering disciplines related to geo-materials, such as foundation engineering, slope engineering, tunnelling, rock engineering, engineering geology and geo-environmental engineering. Geomechanics and Geoengineering is a major publication channel for research in the areas of soil and rock mechanics, geotechnical and geological engineering, engineering geology, geo-environmental engineering and all geo-material related engineering and science disciplines. The Journal provides an international forum for the exchange of innovative ideas, especially between researchers in Asia and the rest of the world.
期刊最新文献
Analytical evaluation of partially stiffened granular piled raft with the effect of rigidity of bearing stratum A parametric study on deformation behaviour for design of braced excavation in soft clay Effect of leachate and used motor oil on the geotechnical and mechanical characteristics of soils with different mineralogy under different moisture conditions Influence of edge distance on experimental p-y curves for piles near slope Performance of loosely skirted square footing resting on reinforced sand under vertical concentric and eccentric loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1