Studies of the Structure and Properties of Weld Deposits of the Sv-AK5 Filler Wire in Robotized Deposit Welding

IF 0.6 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING Russian Journal of Non-Ferrous Metals Pub Date : 2022-10-22 DOI:10.3103/S1067821222050066
K. V. Nikitin, D. A. Dunaev, S. S. Zhatkin, V. I. Nikitin
{"title":"Studies of the Structure and Properties of Weld Deposits of the Sv-AK5 Filler Wire in Robotized Deposit Welding","authors":"K. V. Nikitin,&nbsp;D. A. Dunaev,&nbsp;S. S. Zhatkin,&nbsp;V. I. Nikitin","doi":"10.3103/S1067821222050066","DOIUrl":null,"url":null,"abstract":"<p>The effect of the welding arc current (47, 57, and 67 A) on the structure and properties of the deposited samples obtained by electric arc robotic deposition has been studied. Welding wire Sv-AK5 (ER4043) of the Al-Si system was used as a filler material. The weld deposition was carried out on a substrate in the form of a plate 6 mm thick made of AMg6 alloy (Al–Mg system). In the process of surfacing, a typical two-phase structure of a hypoeutectic composition is formed in the samples, which is characteristic of alloys of the Al‒Si system with a silicon content of 5%. A trend to the enlargement of the structure in the direction from the substrate is observed along height of the deposited layers, which is associated with the accumulation of heat in the layers deposited along the height. With an increase in the welding arc current, dendrites based on α-Al and eutectic Si crystals are refined, while their density increases and microhardness decreases. The increase in density is due to a decrease in the proportion and size of gas pores and the refinement of structural components. The decrease in microhardness is associated with an increase in the proportion of the soft phase (α-Al dendrites) and a decrease in the number hard eutectic silicon crystals. The average content of silicon in the samples deposited in three modes is in the range of 5.46–5.91%, which corresponds to the chemical composition of the welding wire Sv-AK5 (ER4043). An increase in the welding arc current facilitates a growth of tensile strength and a slight decrease in the conditional yield strength and relative elongation. The patterns of the change in the mechanical properties of the deposited samples are due to the specifics of the formation of the cast structure of the deposited layers under conditions of directional solidification in the direction away from the substrate.</p>","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":"63 5","pages":"537 - 543"},"PeriodicalIF":0.6000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Non-Ferrous Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.3103/S1067821222050066","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of the welding arc current (47, 57, and 67 A) on the structure and properties of the deposited samples obtained by electric arc robotic deposition has been studied. Welding wire Sv-AK5 (ER4043) of the Al-Si system was used as a filler material. The weld deposition was carried out on a substrate in the form of a plate 6 mm thick made of AMg6 alloy (Al–Mg system). In the process of surfacing, a typical two-phase structure of a hypoeutectic composition is formed in the samples, which is characteristic of alloys of the Al‒Si system with a silicon content of 5%. A trend to the enlargement of the structure in the direction from the substrate is observed along height of the deposited layers, which is associated with the accumulation of heat in the layers deposited along the height. With an increase in the welding arc current, dendrites based on α-Al and eutectic Si crystals are refined, while their density increases and microhardness decreases. The increase in density is due to a decrease in the proportion and size of gas pores and the refinement of structural components. The decrease in microhardness is associated with an increase in the proportion of the soft phase (α-Al dendrites) and a decrease in the number hard eutectic silicon crystals. The average content of silicon in the samples deposited in three modes is in the range of 5.46–5.91%, which corresponds to the chemical composition of the welding wire Sv-AK5 (ER4043). An increase in the welding arc current facilitates a growth of tensile strength and a slight decrease in the conditional yield strength and relative elongation. The patterns of the change in the mechanical properties of the deposited samples are due to the specifics of the formation of the cast structure of the deposited layers under conditions of directional solidification in the direction away from the substrate.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sv-AK5焊丝机器人堆焊焊层组织与性能研究
研究了焊接电流(47、57和67 A)对电弧机器人沉积样品结构和性能的影响。采用Al-Si体系的焊丝Sv-AK5 (ER4043)作为填充材料。焊接是在6mm厚的AMg6合金(Al-Mg系)板上进行的。在堆焊过程中,样品中形成了典型的亚共晶组成的两相结构,这是硅含量为5%的Al-Si系合金的特征。沿着沉积层的高度观察到从基底方向的结构扩大的趋势,这与沿高度沉积的层中的热量积累有关。随着焊接电弧电流的增大,以α-Al和共晶Si晶为主的枝晶细化,密度增大,显微硬度降低。密度的增加是由于气孔的比例和尺寸的减少以及结构成分的细化。显微硬度的降低与软相(α-Al枝晶)比例的增加和硬共晶硅晶体数量的减少有关。三种模式下沉积样品中硅的平均含量在5.46 ~ 5.91%之间,与焊丝Sv-AK5 (ER4043)的化学成分相对应。焊接电弧电流的增大有利于拉伸强度的增大,而有利于条件屈服强度和相对伸长率的略微降低。沉积样品力学性能变化的模式是由于在远离基体方向的定向凝固条件下沉积层的铸造组织形成的特殊性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Russian Journal of Non-Ferrous Metals
Russian Journal of Non-Ferrous Metals METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.90
自引率
12.50%
发文量
59
审稿时长
3 months
期刊介绍: Russian Journal of Non-Ferrous Metals is a journal the main goal of which is to achieve new knowledge in the following topics: extraction metallurgy, hydro- and pirometallurgy, casting, plastic deformation, metallography and heat treatment, powder metallurgy and composites, self-propagating high-temperature synthesis, surface engineering and advanced protected coatings, environments, and energy capacity in non-ferrous metallurgy.
期刊最新文献
SHS Compaction of TiC-Based Cermets Using Mechanically Activated Mixtures Exothermic Synthesis of Binary Solid Solutions Based on Hafnium and Zirconium Carbides Effect of Mechanical Activation and Combustion Parameters on SHS Compaction of Titanium Carbide Process Research and Mechanism Analysis of Pellet Roasting and Monazite Decomposition Preparation of Mo25ZrB2 Cermet by Hot Pressing Sintering and Its Static Oxidation Behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1