{"title":"Development of carbon anode for cathodic protection of mild steel in chloride environment","authors":"Ayomide Osundare, D. Oloruntoba, P. Popoola","doi":"10.1108/ACMM-07-2017-1817","DOIUrl":null,"url":null,"abstract":"Purpose \n \n \n \n \nThe purpose of this paper is to develop technically efficient and economically effective sacrificial anodes that can be used for cathodic protection (CP) of pipelines in marine environment and fill the knowledge gap in the use of carbon anodes for CP. \n \n \n \n \nDesign/methodology/approach \n \n \n \n \nA sacrificial anode was produced via sand casting by adding varying weight-percent of coal and ferrosilicon to a constant weight-percent of grey cast iron. The hardness of the produced anodes was evaluated using a Rockwell hardness tester. The microstructure of the anodes was observed with scanning electron microscope/energy-dispersive spectroscopy (SEM/EDS). X-ray diffraction (XRD) was used to study the phases present. A potentiostat was used to assess the corrosion behaviour of the produced anodes and mild steel in 3.5 Wt.% NaCl solution. \n \n \n \n \nFindings \n \n \n \n \nThe SEM results showed that some anodes had interdendritic graphite formation, while others had pronounced graphite flakes. The EDS analysis showed carbon and iron to be the prominent elements in the anode. Anodes Bc, B2 and B5 with a corrosion rate of two order of magnitudes were observed to have similar dendritic structures. Anode B4 is the most electronegative with an Ecorr of −670.274 mV Ag/AgCl and a corrosion rate of 0.052475 mmpy. The produced anodes can be used to protect mild steel in the same environment owing to their lower Ecorr values compared to that of mild steel −540.907 mV Ag/AgCl. \n \n \n \n \nOriginality/value \n \n \n \n \nAlloying has been majorly used to improve the efficiency of sacrificial anodes and to alleviate its setbacks. However, development of more technically efficient and economically effective sacrificial anodes via production of composite has not been exhaustively considered. Hence, this research focuses on the development of a carbon based anode by adding natural occurring coal and ferrosilicon to grey cast iron. The corrosion behaviour of the produced anode was evaluated and compared to that of mild steel in marine environment.","PeriodicalId":8217,"journal":{"name":"Anti-corrosion Methods and Materials","volume":"65 1","pages":"158-165"},"PeriodicalIF":2.6000,"publicationDate":"2018-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1108/ACMM-07-2017-1817","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-corrosion Methods and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/ACMM-07-2017-1817","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 2
Abstract
Purpose
The purpose of this paper is to develop technically efficient and economically effective sacrificial anodes that can be used for cathodic protection (CP) of pipelines in marine environment and fill the knowledge gap in the use of carbon anodes for CP.
Design/methodology/approach
A sacrificial anode was produced via sand casting by adding varying weight-percent of coal and ferrosilicon to a constant weight-percent of grey cast iron. The hardness of the produced anodes was evaluated using a Rockwell hardness tester. The microstructure of the anodes was observed with scanning electron microscope/energy-dispersive spectroscopy (SEM/EDS). X-ray diffraction (XRD) was used to study the phases present. A potentiostat was used to assess the corrosion behaviour of the produced anodes and mild steel in 3.5 Wt.% NaCl solution.
Findings
The SEM results showed that some anodes had interdendritic graphite formation, while others had pronounced graphite flakes. The EDS analysis showed carbon and iron to be the prominent elements in the anode. Anodes Bc, B2 and B5 with a corrosion rate of two order of magnitudes were observed to have similar dendritic structures. Anode B4 is the most electronegative with an Ecorr of −670.274 mV Ag/AgCl and a corrosion rate of 0.052475 mmpy. The produced anodes can be used to protect mild steel in the same environment owing to their lower Ecorr values compared to that of mild steel −540.907 mV Ag/AgCl.
Originality/value
Alloying has been majorly used to improve the efficiency of sacrificial anodes and to alleviate its setbacks. However, development of more technically efficient and economically effective sacrificial anodes via production of composite has not been exhaustively considered. Hence, this research focuses on the development of a carbon based anode by adding natural occurring coal and ferrosilicon to grey cast iron. The corrosion behaviour of the produced anode was evaluated and compared to that of mild steel in marine environment.
期刊介绍:
Anti-Corrosion Methods and Materials publishes a broad coverage of the materials and techniques employed in corrosion prevention. Coverage is essentially of a practical nature and designed to be of material benefit to those working in the field. Proven applications are covered together with company news and new product information. Anti-Corrosion Methods and Materials now also includes research articles that reflect the most interesting and strategically important research and development activities from around the world.
Every year, industry pays a massive and rising cost for its corrosion problems. Research and development into new materials, processes and initiatives to combat this loss is increasing, and new findings are constantly coming to light which can help to beat corrosion problems throughout industry. This journal uniquely focuses on these exciting developments to make essential reading for anyone aiming to regain profits lost through corrosion difficulties.
• New methods, materials and software
• New developments in research and industry
• Stainless steels
• Protection of structural steelwork
• Industry update, conference news, dates and events
• Environmental issues
• Health & safety, including EC regulations
• Corrosion monitoring and plant health assessment
• The latest equipment and processes
• Corrosion cost and corrosion risk management.