Visual Exploration of Relationships and Structure in Low-Dimensional Embeddings

IF 4.7 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING IEEE Transactions on Visualization and Computer Graphics Pub Date : 2021-04-08 DOI:10.31219/osf.io/ujbrs
K. Eckelt, A. Hinterreiter, Patrick Adelberger, C. Walchshofer, V. Dhanoa, C. Humer, Moritz Heckmann, C. Steinparz, M. Streit
{"title":"Visual Exploration of Relationships and Structure in Low-Dimensional Embeddings","authors":"K. Eckelt, A. Hinterreiter, Patrick Adelberger, C. Walchshofer, V. Dhanoa, C. Humer, Moritz Heckmann, C. Steinparz, M. Streit","doi":"10.31219/osf.io/ujbrs","DOIUrl":null,"url":null,"abstract":"In this work, we propose an interactive visual approach for the exploration and formation of structural relationships in embeddings of high-dimensional data. These structural relationships, such as item sequences, associations of items with groups, and hierarchies between groups of items, are defining properties of many real-world datasets. Nevertheless, most existing methods for the visual exploration of embeddings treat these structures as second-class citizens or do not take them into account at all. In our proposed analysis workflow, users explore enriched scatterplots of the embedding, in which relationships between items and/or groups are visually highlighted. The original high-dimensional data for single items, groups of items, or differences between connected items and groups is accessible through additional summary visualizations. We carefully tailored these summary and difference visualizations to the various data types and semantic contexts. During their exploratory analysis, users can externalize their insights by setting up additional groups and relationships between items and/or groups. We demonstrate the utility and potential impact of our approach by means of two use cases and multiple examples from various domains.","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":" ","pages":"1-1"},"PeriodicalIF":4.7000,"publicationDate":"2021-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Visualization and Computer Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.31219/osf.io/ujbrs","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 6

Abstract

In this work, we propose an interactive visual approach for the exploration and formation of structural relationships in embeddings of high-dimensional data. These structural relationships, such as item sequences, associations of items with groups, and hierarchies between groups of items, are defining properties of many real-world datasets. Nevertheless, most existing methods for the visual exploration of embeddings treat these structures as second-class citizens or do not take them into account at all. In our proposed analysis workflow, users explore enriched scatterplots of the embedding, in which relationships between items and/or groups are visually highlighted. The original high-dimensional data for single items, groups of items, or differences between connected items and groups is accessible through additional summary visualizations. We carefully tailored these summary and difference visualizations to the various data types and semantic contexts. During their exploratory analysis, users can externalize their insights by setting up additional groups and relationships between items and/or groups. We demonstrate the utility and potential impact of our approach by means of two use cases and multiple examples from various domains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低维嵌入中关系与结构的视觉探索
在这项工作中,我们提出了一种交互式可视化方法来探索和形成高维数据嵌入中的结构关系。这些结构关系,如项目序列、项目与组的关联以及项目组之间的层次结构,定义了许多真实世界数据集的属性。然而,大多数现有的嵌入视觉探索方法将这些结构视为二等公民,或者根本不考虑它们。在我们提出的分析工作流程中,用户探索嵌入的丰富散点图,其中项目和/或组之间的关系在视觉上突出显示。单个项目、项目组或连接的项目和组之间的差异的原始高维数据可以通过附加的摘要可视化来访问。我们仔细地为不同的数据类型和语义上下文定制了这些摘要和差异可视化。在探索性分析期间,用户可以通过在项目和/或组之间设置额外的组和关系来具体化他们的见解。我们通过来自不同领域的两个用例和多个示例来演示我们的方法的实用性和潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Visualization and Computer Graphics
IEEE Transactions on Visualization and Computer Graphics 工程技术-计算机:软件工程
CiteScore
10.40
自引率
19.20%
发文量
946
审稿时长
4.5 months
期刊介绍: TVCG is a scholarly, archival journal published monthly. Its Editorial Board strives to publish papers that present important research results and state-of-the-art seminal papers in computer graphics, visualization, and virtual reality. Specific topics include, but are not limited to: rendering technologies; geometric modeling and processing; shape analysis; graphics hardware; animation and simulation; perception, interaction and user interfaces; haptics; computational photography; high-dynamic range imaging and display; user studies and evaluation; biomedical visualization; volume visualization and graphics; visual analytics for machine learning; topology-based visualization; visual programming and software visualization; visualization in data science; virtual reality, augmented reality and mixed reality; advanced display technology, (e.g., 3D, immersive and multi-modal displays); applications of computer graphics and visualization.
期刊最新文献
EventPointMesh: Human Mesh Recovery Solely From Event Point Clouds A Review and Analysis of Evaluation Practices in VIS Domain Applications HINTs: Sensemaking on large collections of documents with Hypergraph visualization and INTelligent agents RSVP for VPSA : A Meta Design Study on Rapid Suggestive Visualization Prototyping for Visual Parameter Space Analysis 3D Shape Completion on Unseen Categories: A Weakly-Supervised Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1