Bivariate Gaussian models for wind vectors in a distributional regression framework

M. Lang, G. Mayr, R. Stauffer, A. Zeileis
{"title":"Bivariate Gaussian models for wind vectors in a distributional regression framework","authors":"M. Lang, G. Mayr, R. Stauffer, A. Zeileis","doi":"10.5194/ascmo-5-115-2019","DOIUrl":null,"url":null,"abstract":"Abstract. A new probabilistic post-processing method for wind vectors is presented in a distributional regression framework employing the bivariate Gaussian distribution. In contrast to previous studies, all parameters of the distribution are simultaneously modeled, namely the location and scale parameters for both wind components and also the correlation coefficient between them employing flexible regression splines. To capture a possible mismatch between the predicted and observed wind direction, ensemble forecasts of both wind components are included using flexible two-dimensional smooth functions. This encompasses a smooth rotation of the wind direction conditional on the season and the forecasted ensemble wind direction. The performance of the new method is tested for stations located in plains, in mountain foreland, and within an alpine valley, employing ECMWF ensemble forecasts as explanatory variables for all distribution parameters. The rotation-allowing model shows distinct improvements in terms of predictive skill for all sites compared to a baseline model that post-processes each wind component separately. Moreover, different correlation specifications are tested, and small improvements compared to the model setup with no estimated correlation could be found for stations located in alpine valleys.","PeriodicalId":36792,"journal":{"name":"Advances in Statistical Climatology, Meteorology and Oceanography","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Statistical Climatology, Meteorology and Oceanography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/ascmo-5-115-2019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 12

Abstract

Abstract. A new probabilistic post-processing method for wind vectors is presented in a distributional regression framework employing the bivariate Gaussian distribution. In contrast to previous studies, all parameters of the distribution are simultaneously modeled, namely the location and scale parameters for both wind components and also the correlation coefficient between them employing flexible regression splines. To capture a possible mismatch between the predicted and observed wind direction, ensemble forecasts of both wind components are included using flexible two-dimensional smooth functions. This encompasses a smooth rotation of the wind direction conditional on the season and the forecasted ensemble wind direction. The performance of the new method is tested for stations located in plains, in mountain foreland, and within an alpine valley, employing ECMWF ensemble forecasts as explanatory variables for all distribution parameters. The rotation-allowing model shows distinct improvements in terms of predictive skill for all sites compared to a baseline model that post-processes each wind component separately. Moreover, different correlation specifications are tested, and small improvements compared to the model setup with no estimated correlation could be found for stations located in alpine valleys.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分布回归框架中风矢量的双变量高斯模型
摘要在采用二元高斯分布的分布回归框架中,提出了一种新的风矢量概率后处理方法。与之前的研究相反,分布的所有参数都是同时建模的,即两个风分量的位置和尺度参数,以及它们之间的相关系数,都采用了灵活的回归样条。为了捕捉预测风向和观测风向之间可能的不匹配,使用灵活的二维平滑函数包括两个风分量的集合预测。这包括以季节和预测的整体风向为条件的风向的平稳旋转。采用ECMWF集合预测作为所有分布参数的解释变量,对位于平原、山前山脉和高山山谷中的台站测试了新方法的性能。与单独对每个风分量进行后处理的基线模型相比,允许旋转的模型在所有站点的预测技能方面都有明显的改进。此外,对不同的相关性规范进行了测试,与没有估计相关性的模型设置相比,位于高山山谷的站点可以发现微小的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Statistical Climatology, Meteorology and Oceanography
Advances in Statistical Climatology, Meteorology and Oceanography Earth and Planetary Sciences-Atmospheric Science
CiteScore
4.80
自引率
0.00%
发文量
9
审稿时长
26 weeks
期刊最新文献
Applying different methods to model dry and wet spells at daily scale in a large range of rainfall regimes across Europe Spatial patterns and indices for heat waves and droughts over Europe using a decomposition of extremal dependency Comparison of climate time series – Part 5: Multivariate annual cycles Forecasting 24 h averaged PM2.5 concentration in the Aburrá Valley using tree-based machine learning models, global forecasts, and satellite information Quantifying the statistical dependence of mid-latitude heatwave intensity and likelihood on prevalent physical drivers and climate change
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1