{"title":"Some class of numerical radius peak $n$-linear mappings on $l_p$-spaces","authors":"S. Kim","doi":"10.30970/ms.57.1.10-15","DOIUrl":null,"url":null,"abstract":"For $n\\geq 2$ and a real Banach space $E,$ ${\\mathcal L}(^n E:E)$ denotes the space of all continuous $n$-linear mappings from $E$ to itself.Let $$\\Pi(E)=\\Big\\{[x^*, (x_1, \\ldots, x_n)]: x^{*}(x_j)=\\|x^{*}\\|=\\|x_j\\|=1~\\mbox{for}~{j=1, \\ldots, n}\\Big\\}.$$For $T\\in {\\mathcal L}(^n E:E),$ we define $$\\qopname\\relax o{Nr}({T})=\\Big\\{[x^*, (x_1, \\ldots, x_n)]\\in \\Pi(E): |x^{*}(T(x_1, \\ldots, x_n))|=v(T)\\Big\\},$$where $v(T)$ denotes the numerical radius of $T$.$T$ is called {\\em numerical radius peak mapping} if there is $[x^{*}, (x_1, \\ldots, x_n)]\\in \\Pi(E)$ such that $\\qopname\\relax o{Nr}({T})=\\{\\pm [x^{*}, (x_1, \\ldots, x_n)]\\}.$In this paper, we investigate some class of numerical radius peak mappings in ${\\mathcalL}(^n l_p:l_p)$ for $1\\leq p<\\infty.$ Let $(a_{j})_{j\\in \\mathbb{N}}$ be a bounded sequence in $\\mathbb{R}$ such that $\\sup_{j\\in \\mathbb{N}}|a_j|>0.$Define $T\\in {\\mathcal L}(^n l_p:l_p)$ by$$T\\Big(\\sum_{i\\in \\mathbb{N}}x_i^{(1)}e_i, \\cdots, \\sum_{i\\in \\mathbb{N}}x_i^{(n)}e_i \\Big)=\\sum_{j\\in \\mathbb{N}}a_{j}~x_{j}^{(1)}\\cdots x_{j}^{(n)}~e_j.\\qquad\\eqno(*)$$In particular is proved the following statements:\\$1.$\\ If $1< p<+\\infty$ then $T$ is a numerical radius peak mapping if and only if there is $j_0\\in \\mathbb{N}$ such that$$|a_{j_0}|>|a_{j}|~\\mbox{for every}~j\\in \\mathbb{N}\\backslash\\{j_0\\}.$$ \n$2.$\\ If $p=1$ then $T$ is not a numerical radius peak mapping in ${\\mathcal L}(^n l_1:l_1).$","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.57.1.10-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
For $n\geq 2$ and a real Banach space $E,$ ${\mathcal L}(^n E:E)$ denotes the space of all continuous $n$-linear mappings from $E$ to itself.Let $$\Pi(E)=\Big\{[x^*, (x_1, \ldots, x_n)]: x^{*}(x_j)=\|x^{*}\|=\|x_j\|=1~\mbox{for}~{j=1, \ldots, n}\Big\}.$$For $T\in {\mathcal L}(^n E:E),$ we define $$\qopname\relax o{Nr}({T})=\Big\{[x^*, (x_1, \ldots, x_n)]\in \Pi(E): |x^{*}(T(x_1, \ldots, x_n))|=v(T)\Big\},$$where $v(T)$ denotes the numerical radius of $T$.$T$ is called {\em numerical radius peak mapping} if there is $[x^{*}, (x_1, \ldots, x_n)]\in \Pi(E)$ such that $\qopname\relax o{Nr}({T})=\{\pm [x^{*}, (x_1, \ldots, x_n)]\}.$In this paper, we investigate some class of numerical radius peak mappings in ${\mathcalL}(^n l_p:l_p)$ for $1\leq p<\infty.$ Let $(a_{j})_{j\in \mathbb{N}}$ be a bounded sequence in $\mathbb{R}$ such that $\sup_{j\in \mathbb{N}}|a_j|>0.$Define $T\in {\mathcal L}(^n l_p:l_p)$ by$$T\Big(\sum_{i\in \mathbb{N}}x_i^{(1)}e_i, \cdots, \sum_{i\in \mathbb{N}}x_i^{(n)}e_i \Big)=\sum_{j\in \mathbb{N}}a_{j}~x_{j}^{(1)}\cdots x_{j}^{(n)}~e_j.\qquad\eqno(*)$$In particular is proved the following statements:\$1.$\ If $1< p<+\infty$ then $T$ is a numerical radius peak mapping if and only if there is $j_0\in \mathbb{N}$ such that$$|a_{j_0}|>|a_{j}|~\mbox{for every}~j\in \mathbb{N}\backslash\{j_0\}.$$
$2.$\ If $p=1$ then $T$ is not a numerical radius peak mapping in ${\mathcal L}(^n l_1:l_1).$