Leakage through a circular geomembrane hole overlain and underlain by silty sand tailings

IF 2.8 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL Geosynthetics International Pub Date : 2023-06-30 DOI:10.1680/jgein.23.00028
J. Fan, R. Rowe
{"title":"Leakage through a circular geomembrane hole overlain and underlain by silty sand tailings","authors":"J. Fan, R. Rowe","doi":"10.1680/jgein.23.00028","DOIUrl":null,"url":null,"abstract":"Experiments are conducted to investigate leakage through circular GMB holes overlain and underlain by both tailings with various hole diameters and GMB thicknesses. Finite element analyses are performed to explore the effect of hydraulic conductivities (k) of subgrade (underliner) and tailings above the GMB (overliner) on water head contours dissipation. Analytical solution is developed for predicting leakage through circular GMB hole overlain and underlain by both tailings. Results show that the effect of subgrade on leakage is highly dependent on the ratio of k between the underliner and the overliner. If the ratio > 100, no head loss occurs in the subgrade; if the ratio < 0.01, all the head loss occurs in the subgrade. With the deposition of fines from overliner into subgrade, a low permeable filter cake is formed on the subgrade surface, notably increasing the impact of underliner on leakage. With the increasing ratio of k between underliner and overliner from 0.01, 0.1, 1, 10, and to 100, the ratio of leakage relative to a highly permeable subgrade increases from 0.01, 0.1, 0.56, 0.93, and to 1. An intimate interface contact can be achieved when the GMB is underlain by silty sand tailings as subgrade (foundation) material.","PeriodicalId":12616,"journal":{"name":"Geosynthetics International","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosynthetics International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1680/jgein.23.00028","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Experiments are conducted to investigate leakage through circular GMB holes overlain and underlain by both tailings with various hole diameters and GMB thicknesses. Finite element analyses are performed to explore the effect of hydraulic conductivities (k) of subgrade (underliner) and tailings above the GMB (overliner) on water head contours dissipation. Analytical solution is developed for predicting leakage through circular GMB hole overlain and underlain by both tailings. Results show that the effect of subgrade on leakage is highly dependent on the ratio of k between the underliner and the overliner. If the ratio > 100, no head loss occurs in the subgrade; if the ratio < 0.01, all the head loss occurs in the subgrade. With the deposition of fines from overliner into subgrade, a low permeable filter cake is formed on the subgrade surface, notably increasing the impact of underliner on leakage. With the increasing ratio of k between underliner and overliner from 0.01, 0.1, 1, 10, and to 100, the ratio of leakage relative to a highly permeable subgrade increases from 0.01, 0.1, 0.56, 0.93, and to 1. An intimate interface contact can be achieved when the GMB is underlain by silty sand tailings as subgrade (foundation) material.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粉砂尾矿上下覆盖圆形土工膜孔泄漏
试验研究了两种不同孔径、不同厚度的尾砂上覆和下覆圆形尾砂孔的泄漏情况。通过有限元分析,探讨了路基(衬底)和尾矿(衬底)的水力导度k对水头轮廓耗散的影响。建立了两种尾矿上、下覆GMB圆孔渗漏预测的解析解。结果表明,路基对渗漏的影响很大程度上取决于衬底与衬底之间的k比值。比值为> 100时,路基不发生水头损失;当该比值< 0.01时,水头损失全部发生在路基内。随着衬底细粉沉积到路基中,在路基表面形成低渗透性滤饼,显著增加了衬底对渗漏的影响。随着衬底与衬底之间k的比值从0.01、0.1、1、10和100增加,高渗透路基的渗漏比从0.01、0.1、0.56、0.93和1增加。粉砂尾砂作为路基(基础)材料下垫时,可实现紧密的界面接触。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geosynthetics International
Geosynthetics International ENGINEERING, GEOLOGICAL-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
6.90
自引率
20.00%
发文量
91
审稿时长
>12 weeks
期刊介绍: An online only, rapid publication journal, Geosynthetics International – an official journal of the International Geosynthetics Society (IGS) – publishes the best information on current geosynthetics technology in research, design innovation, new materials and construction practice. Topics covered The whole of geosynthetic materials (including natural fibre products) such as research, behaviour, performance analysis, testing, design, construction methods, case histories and field experience. Geosynthetics International is received by all members of the IGS as part of their membership, and is published in e-only format six times a year.
期刊最新文献
Geosynthetic MSE walls research and practice: past, present, and future (2023 IGS Bathurst Lecture) Investigation of the mechanical response of recovered geogrids under repeated loading Factors affecting the tensile strength of bituminous geomembrane seams Centrifuge modeling of levees with geocomposite chimney drain subjected to flooding Selection of long-term shear strength parameters for strain softening geosynthetic interfaces (2023 IGS Rowe Lecture)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1