Computational Study of Aerodynamic Flow over NACA 4412 Airfoil

Moses Omolayo Petinrin, Vincent A. Onoja
{"title":"Computational Study of Aerodynamic Flow over NACA 4412 Airfoil","authors":"Moses Omolayo Petinrin, Vincent A. Onoja","doi":"10.9734/BJAST/2017/31893","DOIUrl":null,"url":null,"abstract":"The lift and drag coefficient plots for any airfoil provides a means for measuring its aerodynamic characteristics. These are very useful in deciding if a particular airfoil is appropriate for any particular application area. This study computationally predicts how the lift coefficient, drag coefficient and drag polar derived for the aerodynamic flow over the NACA 4412 airfoil vary with angles of attack. The effect of varying Reynolds number on the aerodynamic characteristics was also investigated. The finite-volume based computational fluid dynamics code; ANSYS Fluent was used to solve the continuity equation, the Reynolds Averaged Navier-Stokes equation and the turbulence transport equations governing the flow. For the range of Reynolds number considered, flow was taken as incompressible, steady and two-dimensional. Simulations were run for angles of attack ranging from -10° to 18° with an interval of 2° and for a Reynolds number range of 1.0 x 10 6 to 13.0 x 10 6 . Results at a given Reynolds number revealed a steady variation between lift coefficient and angle of attack within the pre-stall region and a gradually increasing curve for the drag coefficients. A constant stalling angle at 14° w ith gradually increasing value for the maximum lift coefficient was recorded as the Reynolds number increased. The drag polar was also found to be constant at 6° for all the ranges of R eynolds number. The results obtained showed that numerically solving for flow problems is a valid approach for obtaining the aerodynamic characteristics of an airfoil since the results were compared with data from wind tunnel tests.","PeriodicalId":91221,"journal":{"name":"British journal of applied science & technology","volume":" ","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British journal of applied science & technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/BJAST/2017/31893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The lift and drag coefficient plots for any airfoil provides a means for measuring its aerodynamic characteristics. These are very useful in deciding if a particular airfoil is appropriate for any particular application area. This study computationally predicts how the lift coefficient, drag coefficient and drag polar derived for the aerodynamic flow over the NACA 4412 airfoil vary with angles of attack. The effect of varying Reynolds number on the aerodynamic characteristics was also investigated. The finite-volume based computational fluid dynamics code; ANSYS Fluent was used to solve the continuity equation, the Reynolds Averaged Navier-Stokes equation and the turbulence transport equations governing the flow. For the range of Reynolds number considered, flow was taken as incompressible, steady and two-dimensional. Simulations were run for angles of attack ranging from -10° to 18° with an interval of 2° and for a Reynolds number range of 1.0 x 10 6 to 13.0 x 10 6 . Results at a given Reynolds number revealed a steady variation between lift coefficient and angle of attack within the pre-stall region and a gradually increasing curve for the drag coefficients. A constant stalling angle at 14° w ith gradually increasing value for the maximum lift coefficient was recorded as the Reynolds number increased. The drag polar was also found to be constant at 6° for all the ranges of R eynolds number. The results obtained showed that numerically solving for flow problems is a valid approach for obtaining the aerodynamic characteristics of an airfoil since the results were compared with data from wind tunnel tests.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NACA 4412翼型气动流动计算研究
升力和阻力系数图为任何翼型提供了一种测量其气动特性的手段。这些是非常有用的决定,如果一个特定的翼型是适合任何特定的应用领域。本研究计算预测如何升力系数,阻力系数和阻力极性推导为气动流量超过NACA 4412翼型随攻角变化。研究了不同雷诺数对气动特性的影响。基于有限体积的计算流体力学代码;利用ANSYS Fluent求解连续方程、Reynolds平均Navier-Stokes方程和控制流动的湍流输运方程。在考虑雷诺数范围内,将流动视为不可压缩、稳态和二维流动。模拟的迎角范围为-10°~ 18°,间隔为2°,雷诺数范围为1.0 × 10.6 ~ 13.0 × 10.6。在一定雷诺数下,升力系数和迎角在失速前区域呈稳定变化,阻力系数呈逐渐增大的曲线。随着雷诺数的增加,在14°w处有一个恒定的失速角,最大升力系数逐渐增大。在R -雷诺数的所有范围内,阻力极性均为6°不变。结果表明,数值求解流动问题是获得翼型气动特性的有效方法,并与风洞试验数据进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Superluminal Hydrogen Atom in a Constant Magnetic Field in (3+1)-dimensional Spacetime (II) Climate Change and Its Impact on Nutritional Status and Health of Children Effect of Bio-stimulants on Improving Floral Characteristics, Yield and Quality of Apple cv. Red Delicious An Analysis of the Potential, Constraints and Strategies for Development of Marirangwe Farm (A Project of the Women’s University in Africa) Choosing the Optimal Segmentation Level for POS Tagging of the Quranic Arabic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1