Study on the Cementitious Properties of Aluminate Cement Clinker Prepared from Melt Reduction Slag of Quenched and Tempered High-Iron Red Mud

IF 0.6 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING Russian Journal of Non-Ferrous Metals Pub Date : 2022-10-22 DOI:10.3103/S106782122205011X
Yang Xuewei, Chen Xin, Zhang Ting’an, Ye Jiayuan, Lv Guozhi, Zheng Xu
{"title":"Study on the Cementitious Properties of Aluminate Cement Clinker Prepared from Melt Reduction Slag of Quenched and Tempered High-Iron Red Mud","authors":"Yang Xuewei,&nbsp;Chen Xin,&nbsp;Zhang Ting’an,&nbsp;Ye Jiayuan,&nbsp;Lv Guozhi,&nbsp;Zheng Xu","doi":"10.3103/S106782122205011X","DOIUrl":null,"url":null,"abstract":"<p>Red mud is another worldwide problem after the bulk solid waste of steel slag.The reaction time between phases of aluminate cement clinker in the molten state is approximately 20 min, and the phase composition obtained is CA. After quenching, a large area of the glass phase appeared in the SEM images of the aluminate cement clinker. The compressive strength and flexural strength at 28 days reached 77.7 and 7.6 MPa, respectively, and the hydration strengths at 1, 3, and 28 days were higher than the strength standard of CA50II aluminate cement.Reconstruction of iron extraction tailings from red mud melting reduction is an effective technology to solve the problems of low cementitious activity, complex composition and large chemical fluctuation of red mud, and it has become an effective technology to improve the comprehensive utilization rate of red mud and promote energy savings and emission reduction.</p>","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":"63 5","pages":"500 - 509"},"PeriodicalIF":0.6000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Non-Ferrous Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.3103/S106782122205011X","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Red mud is another worldwide problem after the bulk solid waste of steel slag.The reaction time between phases of aluminate cement clinker in the molten state is approximately 20 min, and the phase composition obtained is CA. After quenching, a large area of the glass phase appeared in the SEM images of the aluminate cement clinker. The compressive strength and flexural strength at 28 days reached 77.7 and 7.6 MPa, respectively, and the hydration strengths at 1, 3, and 28 days were higher than the strength standard of CA50II aluminate cement.Reconstruction of iron extraction tailings from red mud melting reduction is an effective technology to solve the problems of low cementitious activity, complex composition and large chemical fluctuation of red mud, and it has become an effective technology to improve the comprehensive utilization rate of red mud and promote energy savings and emission reduction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高铁赤泥调质熔渣制备铝酸盐水泥熟料的胶凝性能研究
赤泥是继钢渣固体废弃物之后的又一世界性难题。铝酸盐水泥熟料在熔融状态下的相间反应时间约为20 min,得到的相组成为CA。淬火后,铝酸盐水泥熟料的SEM图像中出现大面积的玻璃相。28 d抗压强度和抗折强度分别达到77.7和7.6 MPa, 1、3、28 d水化强度均高于CA50II铝酸盐水泥的强度标准。赤泥熔融还原提铁尾矿改造是解决赤泥胶凝活性低、成分复杂、化学波动大等问题的有效技术,已成为提高赤泥综合利用率、促进节能减排的有效技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Russian Journal of Non-Ferrous Metals
Russian Journal of Non-Ferrous Metals METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.90
自引率
12.50%
发文量
59
审稿时长
3 months
期刊介绍: Russian Journal of Non-Ferrous Metals is a journal the main goal of which is to achieve new knowledge in the following topics: extraction metallurgy, hydro- and pirometallurgy, casting, plastic deformation, metallography and heat treatment, powder metallurgy and composites, self-propagating high-temperature synthesis, surface engineering and advanced protected coatings, environments, and energy capacity in non-ferrous metallurgy.
期刊最新文献
SHS Compaction of TiC-Based Cermets Using Mechanically Activated Mixtures Exothermic Synthesis of Binary Solid Solutions Based on Hafnium and Zirconium Carbides Effect of Mechanical Activation and Combustion Parameters on SHS Compaction of Titanium Carbide Process Research and Mechanism Analysis of Pellet Roasting and Monazite Decomposition Preparation of Mo25ZrB2 Cermet by Hot Pressing Sintering and Its Static Oxidation Behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1