{"title":"A comprehensive survey on NSGA-II for multi-objective optimization and applications","authors":"Haiping Ma, Yajing Zhang, Shengyi Sun, Ting Liu, Yu Shan","doi":"10.1007/s10462-023-10526-z","DOIUrl":null,"url":null,"abstract":"<div><p>In the last two decades, the fast and elitist non-dominated sorting genetic algorithm (NSGA-II) has attracted extensive research interests, and it is still one of the hottest research methods to deal with multi-objective optimization problems. Considering the importance and wide applications of NSGA-II method, we believe it is the right time to provide a comprehensive survey of the research work in this area, and also to discuss the potential in the future research. The purpose of this paper is to summarize and explore the literature on NSGA-II and another version called NSGA-III, a reference-point based many-objective NSGA-II approach. In this paper, we first introduce the concept of multi-objective optimization and the foundation of NSGA-II. Then we review the family of NSGA-II and their modifications, and classify their applications in engineering community. Finally, we present several interesting open research directions of NSGA-II for multi-objective optimization.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"56 12","pages":"15217 - 15270"},"PeriodicalIF":10.7000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-023-10526-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3
Abstract
In the last two decades, the fast and elitist non-dominated sorting genetic algorithm (NSGA-II) has attracted extensive research interests, and it is still one of the hottest research methods to deal with multi-objective optimization problems. Considering the importance and wide applications of NSGA-II method, we believe it is the right time to provide a comprehensive survey of the research work in this area, and also to discuss the potential in the future research. The purpose of this paper is to summarize and explore the literature on NSGA-II and another version called NSGA-III, a reference-point based many-objective NSGA-II approach. In this paper, we first introduce the concept of multi-objective optimization and the foundation of NSGA-II. Then we review the family of NSGA-II and their modifications, and classify their applications in engineering community. Finally, we present several interesting open research directions of NSGA-II for multi-objective optimization.
期刊介绍:
Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.