High energy ball milling – An advanced processing route for effective development of Titanium Aluminide intermetallic alloy through mechanical alloying
{"title":"High energy ball milling – An advanced processing route for effective development of Titanium Aluminide intermetallic alloy through mechanical alloying","authors":"Ilyas Hussain, R. Immanuel","doi":"10.12968/s0026-0657(22)70020-3","DOIUrl":null,"url":null,"abstract":"Mechanical alloying is traditionally being used for developing novel alloys, which are difficult to prepare by conventional manufacturing routes, through solid state diffusion. It offers unique feature of extended solid solubility resulting in the formation of non-equilibrium immiscible phases that have huge potential in aerospace and defense applications. However, the development of intermetallic class of materials has always been a challenge. Titanium Aluminide, possessing various advantageous properties, has got limited practical usage owing to the difficulty in development. The current research focuses on developing Titanium Aluminide intermetallic material (TiAl) from elemental Aluminumand Titanium powders using high energy planetary ball milling process. The centrifugal force combined with high gravitational counterforce resulted in the formation of intermetallic phase with near stoichiometric ratio. The developed TiAl was subjected to various microstructural and morphological analysis to understand the mechanism of phase formation during the milling process. Results reveal new dimensions for developing intermetallic alloys for various advanced engineering applications.","PeriodicalId":18669,"journal":{"name":"Metal Powder Report","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metal Powder Report","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12968/s0026-0657(22)70020-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Mechanical alloying is traditionally being used for developing novel alloys, which are difficult to prepare by conventional manufacturing routes, through solid state diffusion. It offers unique feature of extended solid solubility resulting in the formation of non-equilibrium immiscible phases that have huge potential in aerospace and defense applications. However, the development of intermetallic class of materials has always been a challenge. Titanium Aluminide, possessing various advantageous properties, has got limited practical usage owing to the difficulty in development. The current research focuses on developing Titanium Aluminide intermetallic material (TiAl) from elemental Aluminumand Titanium powders using high energy planetary ball milling process. The centrifugal force combined with high gravitational counterforce resulted in the formation of intermetallic phase with near stoichiometric ratio. The developed TiAl was subjected to various microstructural and morphological analysis to understand the mechanism of phase formation during the milling process. Results reveal new dimensions for developing intermetallic alloys for various advanced engineering applications.
期刊介绍:
Metal Powder Report covers the powder metallurgy industry worldwide. Each issue carries news and features on technical trends in the manufacture, research and use of metal powders. Metal Powder Report is recognised by parts manufacturers and end-users worldwide for authoritative and high quality reporting and analysis of the international powder metallurgy industry. Included in your Metal Powder Report subscription will be the PM World Directory. This extensive directory will provide you with a valuable comprehensive guide to suppliers of materials, equipment and services to the PM industry.