Remote Pyramid-Shaped Phosphor Coating for Phosphor-Converted White LEDs

S. Abdullayeva, T. Orujov, N. Musayeva, R. Jabbarov, S. Orujov
{"title":"Remote Pyramid-Shaped Phosphor Coating for Phosphor-Converted White LEDs","authors":"S. Abdullayeva, T. Orujov, N. Musayeva, R. Jabbarov, S. Orujov","doi":"10.4236/WJNSE.2017.72002","DOIUrl":null,"url":null,"abstract":"Increasing light extraction efficiency is an important task when it comes to manufacturing a powerful white light emitting diode with high luminous flux per watt. In this paper the fabrication of a pyramid-shaped 3-dimensional phosphor coating is reported. It is represented by a phosphor cover, shaped into an array of pyramid like formations. It is proposed that such a structure can improve the light extraction efficiency and the color distribution characteristics of any phosphor-converted white LED. The luminous flux and luminous efficacy are being studied as a function of the forward current across the die. It was found out that with this kind of technique it was possible to achieve an 8% - 14% increase in the efficacy of the pc-LED. This increase of light output power is being attributed to the reduction of the phenomena of total internal reflection (TIR) inside the packaging module.","PeriodicalId":66816,"journal":{"name":"纳米科学与工程(英文)","volume":"7 1","pages":"17-24"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"纳米科学与工程(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/WJNSE.2017.72002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Increasing light extraction efficiency is an important task when it comes to manufacturing a powerful white light emitting diode with high luminous flux per watt. In this paper the fabrication of a pyramid-shaped 3-dimensional phosphor coating is reported. It is represented by a phosphor cover, shaped into an array of pyramid like formations. It is proposed that such a structure can improve the light extraction efficiency and the color distribution characteristics of any phosphor-converted white LED. The luminous flux and luminous efficacy are being studied as a function of the forward current across the die. It was found out that with this kind of technique it was possible to achieve an 8% - 14% increase in the efficacy of the pc-LED. This increase of light output power is being attributed to the reduction of the phenomena of total internal reflection (TIR) inside the packaging module.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于磷光转换白光led的远端金字塔形磷光涂层
当涉及到制造具有高每瓦光通量的强大白光发光二极管时,提高光提取效率是一项重要任务。本文报道了一种金字塔形三维荧光粉涂层的制备。它由一个磷光体覆盖物来表示,该覆盖物成形为金字塔状的阵列。提出了这样的结构可以提高任何磷光体转换的白色LED的光提取效率和颜色分布特性。光通量和发光效率被研究为通过模具的正向电流的函数。研究发现,利用这种技术,可以使pc LED的功效提高8%-14%。光输出功率的这种增加归因于封装模块内部全内反射(TIR)现象的减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
103
期刊最新文献
Preparation of Antimicrobial Iron Oxide Nanostructures from Galvanizning Effluent Application of Corona Charge Deposition Technique in Thin Film Industry Nanoparticles Modified Electrodes: Synthesis, Modification, and Characterization—A Review Effects of R134a Saturation Temperature on a Shell and Tube Condenser with the Nanofluid Flow in the Tube Using the Thermal Efficiency and Effectiveness Concepts Er3+ and Er3+/Yb3+ Ions Embedded in Nano-Structure BaTi0.9Sn0.1O3: Structure, Morphology and Dielectric Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1