{"title":"Geofluid object workbench (GeoFLOW) for atmospheric dynamics in the approach to exascale: Spectral element formulation and CPU performance","authors":"D. Rosenberg, B. Flynt, M. Govett, I. Jankov","doi":"10.1175/mwr-d-22-0250.1","DOIUrl":null,"url":null,"abstract":"\nA new software framework using a well-established high-order spectral element discretization is presented for solving the compressible Navier–Stokes equations for purposes of research in atmospheric dynamics in bounded and unbounded limited-area domains, with a view toward capturing spatiotemporal intermittency that may be particularly challenging to attain using low order schemes. A review of the discretization is provided, emphasizing properties such as the matrix product formalism and other design considerations that will facilitate its effective use on emerging exascale platforms, and a new geometry-independent, element boundary exchange method is described to maintain continuity. A variety of test problems are presented that demonstrate accuracy of the implementation primarily in wave-dominated or transitional flow regimes; conservation properties are also demonstrated. A strong scaling CPU study in a three-dimensional domain without using threading shows an average parallel efficiency of ≳ 99% up to 2×104 MPI tasks that is not affected negatively by expansion polynomial order. On-node performance is also examined and reveals that, while the primary numerical operations achieve their theoretical arithmetic intensity, the application performance is largely limited by available memory bandwidth.","PeriodicalId":18824,"journal":{"name":"Monthly Weather Review","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Weather Review","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/mwr-d-22-0250.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A new software framework using a well-established high-order spectral element discretization is presented for solving the compressible Navier–Stokes equations for purposes of research in atmospheric dynamics in bounded and unbounded limited-area domains, with a view toward capturing spatiotemporal intermittency that may be particularly challenging to attain using low order schemes. A review of the discretization is provided, emphasizing properties such as the matrix product formalism and other design considerations that will facilitate its effective use on emerging exascale platforms, and a new geometry-independent, element boundary exchange method is described to maintain continuity. A variety of test problems are presented that demonstrate accuracy of the implementation primarily in wave-dominated or transitional flow regimes; conservation properties are also demonstrated. A strong scaling CPU study in a three-dimensional domain without using threading shows an average parallel efficiency of ≳ 99% up to 2×104 MPI tasks that is not affected negatively by expansion polynomial order. On-node performance is also examined and reveals that, while the primary numerical operations achieve their theoretical arithmetic intensity, the application performance is largely limited by available memory bandwidth.
期刊介绍:
Monthly Weather Review (MWR) (ISSN: 0027-0644; eISSN: 1520-0493) publishes research relevant to the analysis and prediction of observed atmospheric circulations and physics, including technique development, data assimilation, model validation, and relevant case studies. This research includes numerical and data assimilation techniques that apply to the atmosphere and/or ocean environments. MWR also addresses phenomena having seasonal and subseasonal time scales.