Large dimensional portfolio allocation based on a mixed frequency dynamic factor model

IF 1 4区 经济学 Q3 ECONOMICS Econometric Reviews Pub Date : 2022-02-02 DOI:10.1080/07474938.2021.1983327
Siyang Peng, Shaojun Guo, Yonghong Long
{"title":"Large dimensional portfolio allocation based on a mixed frequency dynamic factor model","authors":"Siyang Peng, Shaojun Guo, Yonghong Long","doi":"10.1080/07474938.2021.1983327","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we propose a mixed-frequency dynamic factor model (MFDFM) taking into account the high-frequency variation and low-frequency variation at the same time. The factor loadings in our model are affected by the past quadratic variation of factor returns, while the process of the factor quadratic variation is under a mixed-frequency framework (DCC-RV). By combing the variations from the high-frequency and low-frequency domain, our approach exhibits a better estimation and forecast of the assets covariance matrix. Our empirical study compares our MFDFM model with the sample realized covariance matrix and the traditional factor model with intraday returns or daily returns. The results of the empirical study indicate that our proposed model indeed outperforms other models in the sense that the Markowitz’s portfolios based on the MFDFM have a better performance.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"41 1","pages":"539 - 563"},"PeriodicalIF":1.0000,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/07474938.2021.1983327","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we propose a mixed-frequency dynamic factor model (MFDFM) taking into account the high-frequency variation and low-frequency variation at the same time. The factor loadings in our model are affected by the past quadratic variation of factor returns, while the process of the factor quadratic variation is under a mixed-frequency framework (DCC-RV). By combing the variations from the high-frequency and low-frequency domain, our approach exhibits a better estimation and forecast of the assets covariance matrix. Our empirical study compares our MFDFM model with the sample realized covariance matrix and the traditional factor model with intraday returns or daily returns. The results of the empirical study indicate that our proposed model indeed outperforms other models in the sense that the Markowitz’s portfolios based on the MFDFM have a better performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合频率动态因子模型的大维投资组合配置
摘要在本文中,我们提出了一个同时考虑高频变化和低频变化的混合频率动态因素模型(MFDFM)。我们模型中的因子负荷受到过去因子收益的二次变化的影响,而因子二次变化过程是在混合频率框架下(DCC-RV)。通过结合高频和低频域的变化,我们的方法对资产协方差矩阵进行了更好的估计和预测。我们的实证研究将我们的MFDFM模型与样本实现的协方差矩阵进行了比较,并将传统的因子模型与日内收益或日内收益进行了比较。实证研究的结果表明,我们提出的模型确实优于其他模型,因为基于MFDFM的Markowitz投资组合具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Econometric Reviews
Econometric Reviews 管理科学-数学跨学科应用
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.
期刊最新文献
Estimation of random functions proxying for unobservables Bootstrap inference on a factor model based average treatment effects estimator Using machine learning for efficient flexible regression adjustment in economic experiments Lag order selection for long-run variance estimation in econometrics Selecting the number of factors in approximate factor models using group variable regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1