Reduction of Pressure Pulsation for Pump-Turbine by Variable Speed Operation

IF 2.6 3区 工程技术 Q3 ENERGY & FUELS Journal of Energy Resources Technology-transactions of The Asme Pub Date : 2023-04-27 DOI:10.1115/1.4062442
Yulan Li, Weijia Yang, Yifan Huang, Weichao Ma, Zhigao Zhao, Jiebin Yang, Yongguang Cheng, Z. Qian, Jiandong Yang
{"title":"Reduction of Pressure Pulsation for Pump-Turbine by Variable Speed Operation","authors":"Yulan Li, Weijia Yang, Yifan Huang, Weichao Ma, Zhigao Zhao, Jiebin Yang, Yongguang Cheng, Z. Qian, Jiandong Yang","doi":"10.1115/1.4062442","DOIUrl":null,"url":null,"abstract":"\n Variable speed operation has emerged as a key direction in the development of pumped storage technology. Maintaining pressure pulsation within the control range is particularly critical for ensuring operational safety of variable-speed pumped storage plants (VSPSPs). However, there is limited research on the relationship between pressure pulsation for pump-turbine and variable speed operation. This paper presents amplitude distribution diagrams of pressure pulsation, obtained from processing model test results of a real VSPSP. Different conditions of variable speed operation are simulated by a numerical model to analyze the influence of operating trajectory on pressure pulsation, and the intensity of pressure pulsation is quantitatively evaluated. According to the results, when the initial speed or speed command increases, the trajectory passes through more regions with high-amplitude pressure pulsation and gradually moves towards the S-shaped region, leading to pressure oscillations. When speed command reduces, maximum pressure pulsation at the volute inlet and in the draft tube can be reduced by 82.18% and 63.24% at most, and the evaluation score can be increased by 28.77%. The findings of this study can offer theoretical guidance for operating VSPSPs.","PeriodicalId":15676,"journal":{"name":"Journal of Energy Resources Technology-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Resources Technology-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062442","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 2

Abstract

Variable speed operation has emerged as a key direction in the development of pumped storage technology. Maintaining pressure pulsation within the control range is particularly critical for ensuring operational safety of variable-speed pumped storage plants (VSPSPs). However, there is limited research on the relationship between pressure pulsation for pump-turbine and variable speed operation. This paper presents amplitude distribution diagrams of pressure pulsation, obtained from processing model test results of a real VSPSP. Different conditions of variable speed operation are simulated by a numerical model to analyze the influence of operating trajectory on pressure pulsation, and the intensity of pressure pulsation is quantitatively evaluated. According to the results, when the initial speed or speed command increases, the trajectory passes through more regions with high-amplitude pressure pulsation and gradually moves towards the S-shaped region, leading to pressure oscillations. When speed command reduces, maximum pressure pulsation at the volute inlet and in the draft tube can be reduced by 82.18% and 63.24% at most, and the evaluation score can be increased by 28.77%. The findings of this study can offer theoretical guidance for operating VSPSPs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过变速运行降低水泵水轮机压力脉动
变速运行已成为抽水蓄能技术发展的一个重要方向。保持压力脉动在控制范围内对于确保变速抽水蓄能电站(VSPSPs)的运行安全尤为重要。然而,对水泵水轮机压力脉动与变速运行之间的关系研究较少。本文给出了实际VSPSP处理模型试验结果的压力脉动幅值分布图。采用数值模型模拟了不同工况下的变速运行,分析了运行轨迹对压力脉动的影响,定量评价了压力脉动的强度。结果表明,当初始速度或速度指令增大时,轨迹经过更多的高幅值压力脉动区域,并逐渐向s型区域移动,导致压力振荡。当速度指令降低时,蜗壳进口和尾水管最大压力脉动最大可降低82.18%和63.24%,评价分数可提高28.77%。本研究结果可为vspsp的运营提供理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
30.00%
发文量
213
审稿时长
4.5 months
期刊介绍: Specific areas of importance including, but not limited to: Fundamentals of thermodynamics such as energy, entropy and exergy, laws of thermodynamics; Thermoeconomics; Alternative and renewable energy sources; Internal combustion engines; (Geo) thermal energy storage and conversion systems; Fundamental combustion of fuels; Energy resource recovery from biomass and solid wastes; Carbon capture; Land and offshore wells drilling; Production and reservoir engineering;, Economics of energy resource exploitation
期刊最新文献
Modeling and influence factors analysis of refueling emissions for plug-in hybrid electric vehicles Structure optimization and performance evaluation of downhole oil-water separation tools: a novel hydrocyclone Effects of Trapped Gas in Fracture-Pore Carbonate Reservoirs Shale Oil-water Two-phase Flow Simulation based on Pore Network Modeling Investigation on the effects of nanorefrigerants in a combined cycle of ejector refrigeration cycle and Kalina cycle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1