{"title":"Siamese-Network Based Signature Verification using Self Supervised Learning","authors":"Muhammad Fawwaz Mayda, Aina Musdholifah","doi":"10.22146/ijccs.74627","DOIUrl":null,"url":null,"abstract":"The use of signatures is often encountered in various public documents ranging from academic documents to business documents that are a sign that the existence of signatures is crucial in various administrative processes. The frequent use of signatures does not mean a procedure without loopholes, but we must remain vigilant against signature falsification carried out with various motives behind it. Therefore, in this study, a signature verification system was developed that could prevent the falsification of signatures in public documents by using digital imagery of existing signatures. This study used neural networks with siamese network-based architectures that also empower self-supervised learning techniques to improve accuracy in the realm of limited data. The final evaluation of the machine learning method used gets a maximum accuracy of 83% and this result is better than the machine learning model that does not involve self-supervised learning methods.","PeriodicalId":31625,"journal":{"name":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijccs.74627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The use of signatures is often encountered in various public documents ranging from academic documents to business documents that are a sign that the existence of signatures is crucial in various administrative processes. The frequent use of signatures does not mean a procedure without loopholes, but we must remain vigilant against signature falsification carried out with various motives behind it. Therefore, in this study, a signature verification system was developed that could prevent the falsification of signatures in public documents by using digital imagery of existing signatures. This study used neural networks with siamese network-based architectures that also empower self-supervised learning techniques to improve accuracy in the realm of limited data. The final evaluation of the machine learning method used gets a maximum accuracy of 83% and this result is better than the machine learning model that does not involve self-supervised learning methods.