Thermal effusivity determination of carbon fibre-reinforced polymers by means of active thermography

IF 3.7 3区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION Quantitative Infrared Thermography Journal Pub Date : 2020-07-02 DOI:10.1080/17686733.2019.1646464
J. Suchan, G. Hendorfer
{"title":"Thermal effusivity determination of carbon fibre-reinforced polymers by means of active thermography","authors":"J. Suchan, G. Hendorfer","doi":"10.1080/17686733.2019.1646464","DOIUrl":null,"url":null,"abstract":"ABSTRACT We present a new imaging approach to determine porosity in carbon fibre-reinforced polymers by active thermography in the reflection mode. The infrared radiation is excited with help of a semiconductor laser. We use rectangular pulses for the excitation light – either single pulses or a sequence of a couple of pulses – and measure the succeeding temperature transients. These signals are transferred to the frequency domain by means of a discrete Laplace transformation. The evaluation of the thermal effusivity is done by a linear fitting process which gives unequivocal results with comparatively small error bars. The method is fast and robust, and the results compare well with prior experiments carried out with ultrasonic-testing, X-ray computed tomography or other approaches of thermography, where the thermal diffusivity has been determined.","PeriodicalId":54525,"journal":{"name":"Quantitative Infrared Thermography Journal","volume":"17 1","pages":"210 - 222"},"PeriodicalIF":3.7000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17686733.2019.1646464","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Infrared Thermography Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17686733.2019.1646464","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 3

Abstract

ABSTRACT We present a new imaging approach to determine porosity in carbon fibre-reinforced polymers by active thermography in the reflection mode. The infrared radiation is excited with help of a semiconductor laser. We use rectangular pulses for the excitation light – either single pulses or a sequence of a couple of pulses – and measure the succeeding temperature transients. These signals are transferred to the frequency domain by means of a discrete Laplace transformation. The evaluation of the thermal effusivity is done by a linear fitting process which gives unequivocal results with comparatively small error bars. The method is fast and robust, and the results compare well with prior experiments carried out with ultrasonic-testing, X-ray computed tomography or other approaches of thermography, where the thermal diffusivity has been determined.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用主动热成像法测定碳纤维增强聚合物的热渗透率
我们提出了一种新的成像方法,通过反射模式的主动热成像来确定碳纤维增强聚合物的孔隙度。红外辐射在半导体激光器的帮助下被激发。我们使用矩形脉冲作为激发光-单脉冲或一对脉冲序列-并测量随后的温度瞬变。这些信号通过离散拉普拉斯变换被转移到频域。热渗透率的评估是通过线性拟合过程完成的,该过程给出了相对较小误差条的明确结果。该方法快速且稳健,其结果与先前使用超声检测、x射线计算机断层扫描或其他热成像方法进行的实验结果相比较,其中热扩散率已经确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantitative Infrared Thermography Journal
Quantitative Infrared Thermography Journal Physics and Astronomy-Instrumentation
CiteScore
6.80
自引率
12.00%
发文量
17
审稿时长
>12 weeks
期刊介绍: The Quantitative InfraRed Thermography Journal (QIRT) provides a forum for industry and academia to discuss the latest developments of instrumentation, theoretical and experimental practices, data reduction, and image processing related to infrared thermography.
期刊最新文献
Automatic segmentation of microporous defects in composite film materials based on the improved attention U-Net module A deep learning based experimental framework for automatic staging of pressure ulcers from thermal images Enhancing the thermographic diagnosis of maxillary sinusitis using deep learning approach Review of unmanned aerial vehicle infrared thermography (UAV-IRT) applications in building thermal performance: towards the thermal performance evaluation of building envelope Evaluation of typical rail defects by induction thermography: experimental results and procedure for data analysis during high-speed laboratory testing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1