A. Saleem, I. Fareed, M. Irshad, Q. Mahmood, A. Eneji, M. Shahzad
{"title":"Transformations of Phosphorus and Other Plant Nutrients in Poultry Litter Composted with Sugarcane and Cabbage Wastes","authors":"A. Saleem, I. Fareed, M. Irshad, Q. Mahmood, A. Eneji, M. Shahzad","doi":"10.1080/1065657X.2017.1396268","DOIUrl":null,"url":null,"abstract":"ABSTRACT Poultry litter (PL) is a significant source of nutrients, but a suitable amount of carbon needs to be added as a bulking agent during its composting to a stable nutrient source. Here, we characterized the transformation of phosphorus and other plant nutrients during aerobic composting of PL with sugarcane (SW) and cabbage waste (CW) for 120 d. Periodic samples were collected during composting and analyzed for total C, P (and its fractions), K, Ca, Mg, Cu, Fe, Zn, Mn, EC and pH. At the initial stage of composting (20 d), the P fractions varied in the order: water soluble P > NaHCO3-P (readily plant-available) > HCl-P (Ca+Mg-bound) > residual-P > NaOH-P (Fe+Al-bound). After 120 d, the order was HCl-P > residual-P > water-P > NaHCO3-P > NaOH-P. These variations suggested a transformation of labile Pi to more recalcitrant forms during composting. Water soluble P was the dominant fraction during the initial composting period. This declined progressively with time of composting, while the HCl-P increased, confirming the transformation of the more vulnerable water soluble P to the more recalcitrant HCl-extractable P. This indicated that the composting could be a useful way of managing manure for P stabilization and reducing its losses in runoff water following land application. The total C varied directly with the ratio of sugarcane and cabbage wastes in the manure but was inversely related to the duration of composting. Extractable K, Ca, Mg, and Na increased whereas trace elements concentrations decreased with time of composting. The higher availability of basic plant nutrients and reduced availability of heavy metals in the mature compost are valuable attributes for safe use in sustainable agricultural production.","PeriodicalId":10714,"journal":{"name":"Compost Science & Utilization","volume":"26 1","pages":"114 - 127"},"PeriodicalIF":2.0000,"publicationDate":"2018-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1065657X.2017.1396268","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compost Science & Utilization","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/1065657X.2017.1396268","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 5
Abstract
ABSTRACT Poultry litter (PL) is a significant source of nutrients, but a suitable amount of carbon needs to be added as a bulking agent during its composting to a stable nutrient source. Here, we characterized the transformation of phosphorus and other plant nutrients during aerobic composting of PL with sugarcane (SW) and cabbage waste (CW) for 120 d. Periodic samples were collected during composting and analyzed for total C, P (and its fractions), K, Ca, Mg, Cu, Fe, Zn, Mn, EC and pH. At the initial stage of composting (20 d), the P fractions varied in the order: water soluble P > NaHCO3-P (readily plant-available) > HCl-P (Ca+Mg-bound) > residual-P > NaOH-P (Fe+Al-bound). After 120 d, the order was HCl-P > residual-P > water-P > NaHCO3-P > NaOH-P. These variations suggested a transformation of labile Pi to more recalcitrant forms during composting. Water soluble P was the dominant fraction during the initial composting period. This declined progressively with time of composting, while the HCl-P increased, confirming the transformation of the more vulnerable water soluble P to the more recalcitrant HCl-extractable P. This indicated that the composting could be a useful way of managing manure for P stabilization and reducing its losses in runoff water following land application. The total C varied directly with the ratio of sugarcane and cabbage wastes in the manure but was inversely related to the duration of composting. Extractable K, Ca, Mg, and Na increased whereas trace elements concentrations decreased with time of composting. The higher availability of basic plant nutrients and reduced availability of heavy metals in the mature compost are valuable attributes for safe use in sustainable agricultural production.
期刊介绍:
4 issues per year
Compost Science & Utilization is currently abstracted/indexed in: CABI Agriculture & Environment Abstracts, CSA Biotechnology and Environmental Engineering Abstracts, EBSCOhost Abstracts, Elsevier Compendex and GEOBASE Abstracts, PubMed, ProQuest Science Abstracts, and Thomson Reuters Biological Abstracts and Science Citation Index