teigen: An R Package for Model-Based Clustering and Classification via the Multivariate t Distribution

IF 5.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Statistical Software Pub Date : 2018-02-27 DOI:10.18637/JSS.V083.I07
J. Andrews, Jaymeson R. Wickins, Nicholas M. Boers, P. McNicholas
{"title":"teigen: An R Package for Model-Based Clustering and Classification via the Multivariate t Distribution","authors":"J. Andrews, Jaymeson R. Wickins, Nicholas M. Boers, P. McNicholas","doi":"10.18637/JSS.V083.I07","DOIUrl":null,"url":null,"abstract":"The teigen R package is introduced and utilized for model-based clustering and classification. The tEIGEN family of mixtures of multivariate t distributions is formed via an eigen-decomposition of the component covariance matrices and subsequent componentwise constraints. The teigen package implements all previously published tEIGEN family members as well as eight additional models: four multivariate and four univariate. The resulting family of 32 mixture models is implemented in both serial and parallel, with useful dedicated functions. Methodology and examples that illustrate teigen's functionality are presented.","PeriodicalId":17237,"journal":{"name":"Journal of Statistical Software","volume":"83 1","pages":"1-32"},"PeriodicalIF":5.4000,"publicationDate":"2018-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.18637/JSS.V083.I07","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 49

Abstract

The teigen R package is introduced and utilized for model-based clustering and classification. The tEIGEN family of mixtures of multivariate t distributions is formed via an eigen-decomposition of the component covariance matrices and subsequent componentwise constraints. The teigen package implements all previously published tEIGEN family members as well as eight additional models: four multivariate and four univariate. The resulting family of 32 mixture models is implemented in both serial and parallel, with useful dedicated functions. Methodology and examples that illustrate teigen's functionality are presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
teigen:一个通过多元t分布进行基于模型聚类和分类的R包
介绍了teigen R包,并将其用于基于模型的聚类和分类。多元t分布的tEIGEN族是通过成分协方差矩阵的特征分解和随后的成分约束形成的。teigen包实现了所有以前发布的teigen家族成员以及八个额外的模型:四个多变量和四个单变量。所得到的32个混合模型以串行和并行方式实现,并具有有用的专用功能。给出了说明teigen功能的方法和示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Statistical Software
Journal of Statistical Software 工程技术-计算机:跨学科应用
CiteScore
10.70
自引率
1.70%
发文量
40
审稿时长
6-12 weeks
期刊介绍: The Journal of Statistical Software (JSS) publishes open-source software and corresponding reproducible articles discussing all aspects of the design, implementation, documentation, application, evaluation, comparison, maintainance and distribution of software dedicated to improvement of state-of-the-art in statistical computing in all areas of empirical research. Open-source code and articles are jointly reviewed and published in this journal and should be accessible to a broad community of practitioners, teachers, and researchers in the field of statistics.
期刊最新文献
spsurvey: Spatial Sampling Design and Analysis in R. Application of Equal Local Levels to Improve Q-Q Plot Testing Bands with R Package qqconf. Elastic Net Regularization Paths for All Generalized Linear Models. Broken Stick Model for Irregular Longitudinal Data jumpdiff: A Python Library for Statistical Inference of Jump-Diffusion Processes in Observational or Experimental Data Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1