A hybrid framework for modelling domains using quantitative covariates

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Applied Computing and Geosciences Pub Date : 2022-12-01 DOI:10.1016/j.acags.2022.100107
Yerniyaz Abildin , Chaoshui Xu , Peter Dowd , Amir Adeli
{"title":"A hybrid framework for modelling domains using quantitative covariates","authors":"Yerniyaz Abildin ,&nbsp;Chaoshui Xu ,&nbsp;Peter Dowd ,&nbsp;Amir Adeli","doi":"10.1016/j.acags.2022.100107","DOIUrl":null,"url":null,"abstract":"<div><p>Domains define the boundaries of mineralisation zones, within which the grade distribution of the target minerals can be quantified via an established mineral resource estimation procedure. Available domain modelling techniques include manual interpretation, implicit modelling and advanced geostatistical approaches. In mining applications, the most commonly used method is manual domaining, which is labour-intensive and prone to subjective judgement errors. In addition, the output is largely deterministic and ignores the significant uncertainty associated with the domain interpretation and boundary definitions. There is, therefore, a need for a more objective framework that can automatically define mineral domains and quantify the associated uncertainty. This paper describes such a framework, which consists of a hybrid approach based on simulated grade distributions and a machine learning (ML) classification technique, XGBoost, trained on lithological properties. Data from an Iron Oxide Copper Gold (IOCG) deposit are used as a case study to demonstrate the application of the proposed method. The study shows that the approach can handle complex multi-class problems with imbalanced features, and it can quantify the uncertainty of domain boundaries. A noise filtering method is used as a pre-processing step to improve the performance of the ML classification, especially in the case of problematic classes where domain boundaries are difficult to predict due to the similarity in geological characteristics.</p></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"16 ","pages":"Article 100107"},"PeriodicalIF":2.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590197422000295/pdfft?md5=2eddf2c8c4fbf2254243d8f71b09b5b8&pid=1-s2.0-S2590197422000295-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197422000295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

Abstract

Domains define the boundaries of mineralisation zones, within which the grade distribution of the target minerals can be quantified via an established mineral resource estimation procedure. Available domain modelling techniques include manual interpretation, implicit modelling and advanced geostatistical approaches. In mining applications, the most commonly used method is manual domaining, which is labour-intensive and prone to subjective judgement errors. In addition, the output is largely deterministic and ignores the significant uncertainty associated with the domain interpretation and boundary definitions. There is, therefore, a need for a more objective framework that can automatically define mineral domains and quantify the associated uncertainty. This paper describes such a framework, which consists of a hybrid approach based on simulated grade distributions and a machine learning (ML) classification technique, XGBoost, trained on lithological properties. Data from an Iron Oxide Copper Gold (IOCG) deposit are used as a case study to demonstrate the application of the proposed method. The study shows that the approach can handle complex multi-class problems with imbalanced features, and it can quantify the uncertainty of domain boundaries. A noise filtering method is used as a pre-processing step to improve the performance of the ML classification, especially in the case of problematic classes where domain boundaries are difficult to predict due to the similarity in geological characteristics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用定量协变量建模域的混合框架
区域定义了矿化带的边界,在这个边界内,目标矿物的品位分布可以通过既定的矿产资源估计程序进行量化。可用的领域建模技术包括人工解释、隐式建模和先进的地质统计学方法。在采矿应用中,最常用的方法是人工定域,这是一种劳动密集型的方法,容易产生主观判断错误。此外,输出在很大程度上是确定性的,忽略了与领域解释和边界定义相关的重要不确定性。因此,需要一个更客观的框架,能够自动确定矿物领域和量化相关的不确定性。本文描述了这样一个框架,该框架由基于模拟品位分布的混合方法和基于岩性特性训练的机器学习(ML)分类技术XGBoost组成。以氧化铁铜金(IOCG)矿床的数据为例,验证了该方法的应用。研究表明,该方法可以处理具有不平衡特征的复杂多类问题,并能量化领域边界的不确定性。使用噪声滤波方法作为预处理步骤来提高ML分类的性能,特别是在由于地质特征相似而难以预测领域边界的问题类的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
期刊最新文献
Revolutionizing the future of hydrological science: Impact of machine learning and deep learning amidst emerging explainable AI and transfer learning Generating land gravity anomalies from satellite gravity observations using PIX2PIX GAN image translation Reconstruction of reservoir rock using attention-based convolutional recurrent neural network Mapping landforms of a hilly landscape using machine learning and high-resolution LiDAR topographic data Evaluating the performances of SVR and XGBoost for short-range forecasting of heatwaves across different temperature zones of India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1