{"title":"Refined descriptive sampling simulated annealing algorithm for solving the traveling salesman problem","authors":"Meriem Cherabli, Megdouda Ourbih-Tari, Meriem Boubalou","doi":"10.1515/mcma-2022-2113","DOIUrl":null,"url":null,"abstract":"Abstract The simulated annealing (SA) algorithm is a popular intelligent optimization algorithm which has been successfully applied in many fields. In this paper, we propose a software component under the Windows environment called goRDS which implements a refined descriptive sampling (RDS) number generator of high quality in the MATLAB programming language. The aim of this generator is to sample random inputs through the RDS method to be used in the Simple SA algorithm with swap operator. In this way, the new probabilistic meta-heuristic algorithm called RDS-SA algorithm will enhance the simple SA algorithm with swap operator, the SA algorithm and possibly its variants with solutions of better quality and precision. Towards this goal, the goRDS generator was highly tested by adequate statistical tests and compared statistically to the random number generator (RNG) of MATLAB, and it was proved that goRDS has passed all tests better. Simulation experiments were carried out on the benchmark traveling salesman problem (TSP) and the results show that the solutions obtained with the RDS-SA algorithm are of better quality and precision than those of the simple SA algorithm with swap operator, since the software component goRDS represents the probability behavior of the SA input random variables better than the usual RNG.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"28 1","pages":"175 - 188"},"PeriodicalIF":0.8000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2022-2113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract The simulated annealing (SA) algorithm is a popular intelligent optimization algorithm which has been successfully applied in many fields. In this paper, we propose a software component under the Windows environment called goRDS which implements a refined descriptive sampling (RDS) number generator of high quality in the MATLAB programming language. The aim of this generator is to sample random inputs through the RDS method to be used in the Simple SA algorithm with swap operator. In this way, the new probabilistic meta-heuristic algorithm called RDS-SA algorithm will enhance the simple SA algorithm with swap operator, the SA algorithm and possibly its variants with solutions of better quality and precision. Towards this goal, the goRDS generator was highly tested by adequate statistical tests and compared statistically to the random number generator (RNG) of MATLAB, and it was proved that goRDS has passed all tests better. Simulation experiments were carried out on the benchmark traveling salesman problem (TSP) and the results show that the solutions obtained with the RDS-SA algorithm are of better quality and precision than those of the simple SA algorithm with swap operator, since the software component goRDS represents the probability behavior of the SA input random variables better than the usual RNG.