L.G. Lafaurie-Ponce, F. Chejne, Luis M. Ramirez-Aristeguieta, Carlos Gomez
{"title":"A Study of the Nonlinear Thomson Effect Produced by Changing the Current in a Thermoelectric Cooler","authors":"L.G. Lafaurie-Ponce, F. Chejne, Luis M. Ramirez-Aristeguieta, Carlos Gomez","doi":"10.1515/jnet-2022-0037","DOIUrl":null,"url":null,"abstract":"Abstract This work describes the nonlinear Thomson effect produced by a transient current source powering a thermoelectric cooler. The electric effect of the capacitive impedance in the semiconductors was considered in the equations as a novelty term that naturally appears by solving the Boltzmann equation to find the mathematical form of the current density. Thus, considering the new term and heath energy balances, a one-dimensional mathematical model for a thermoelectric cooler (TEC) powered by a time-dependent current was developed, finding a new nonlinear Thomson effect in the heath transfer equations. To evaluate the impact of the nonlinear effect on the thermodynamic behavior of the thermoelectric cooler, a continuous, sinusoidal and square-pulse current conditions were simulated. The temperature profile, temporal evolution, and the effective coefficient of performance (COP) were calculated. The results revealed a new thermoelectric heat transfer in addition to the Thomson flow created by virtual junctions throughout the semiconductors caused by the instantaneous change of current. This fact was evidenced by three results: the shifting of the temperature mean value due to the peak current change 0.45 A is 1.68 K1.68\\hspace{0.1667em}\\mathrm{K} and 2.56 K2.56\\hspace{0.1667em}\\mathrm{K} to sinusoidal and square current supplies, respectively; it was determined that a TEC powered by a square-pulse current signal had greater effective efficacy, having more pronounced cold side supercooling temperature peaks compared to those powered by a constant sinusoidal current signal.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"47 1","pages":"339 - 354"},"PeriodicalIF":4.3000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2022-0037","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract This work describes the nonlinear Thomson effect produced by a transient current source powering a thermoelectric cooler. The electric effect of the capacitive impedance in the semiconductors was considered in the equations as a novelty term that naturally appears by solving the Boltzmann equation to find the mathematical form of the current density. Thus, considering the new term and heath energy balances, a one-dimensional mathematical model for a thermoelectric cooler (TEC) powered by a time-dependent current was developed, finding a new nonlinear Thomson effect in the heath transfer equations. To evaluate the impact of the nonlinear effect on the thermodynamic behavior of the thermoelectric cooler, a continuous, sinusoidal and square-pulse current conditions were simulated. The temperature profile, temporal evolution, and the effective coefficient of performance (COP) were calculated. The results revealed a new thermoelectric heat transfer in addition to the Thomson flow created by virtual junctions throughout the semiconductors caused by the instantaneous change of current. This fact was evidenced by three results: the shifting of the temperature mean value due to the peak current change 0.45 A is 1.68 K1.68\hspace{0.1667em}\mathrm{K} and 2.56 K2.56\hspace{0.1667em}\mathrm{K} to sinusoidal and square current supplies, respectively; it was determined that a TEC powered by a square-pulse current signal had greater effective efficacy, having more pronounced cold side supercooling temperature peaks compared to those powered by a constant sinusoidal current signal.
期刊介绍:
The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena.
Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level.
The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.