DESIGN CONCEPTION AND EVALUATION OF AN UNMANNED AMPHIBIOUS AERIAL VEHICLE USING SYSTEMATIC APPROACH

IF 0.8 Q3 ENGINEERING, AEROSPACE Aviation Pub Date : 2022-03-30 DOI:10.3846/aviation.2022.16519
S. Ganesan, B. Esakki, S. Mathiyazhagan, Vikram Pandimuthu
{"title":"DESIGN CONCEPTION AND EVALUATION OF AN UNMANNED AMPHIBIOUS AERIAL VEHICLE USING SYSTEMATIC APPROACH","authors":"S. Ganesan, B. Esakki, S. Mathiyazhagan, Vikram Pandimuthu","doi":"10.3846/aviation.2022.16519","DOIUrl":null,"url":null,"abstract":"This article’s incitement interprets Unmanned Amphibious Aerial Vehicle (UAAV)’s conceptual design process in a systematic approach. The UAAV is conceptualised to be an ideal tool for limnologists in water quality assessment. Integration of hovercraft with the multi-rotor system helps collect water samples from remote and inaccessible water bodies. The UAAV flies in multi-rotor mode, subsequently land and glide along the water surface in hovercraft mode. The new and unconventional vehicle configuration makes the conceptual stage a challenging one in the design process. To overcome the challenges and strapped configuration of vehicle design, the Authors used a systematic approach of scenario-based design, morphological matrix, and Pugh’s method in the design process of the “Pahl & Beitz” model to retrieve the best possible UAAV design. The conglomerate design of UAAV is evaluated for its design requirements, and the computational analysis is performed to examine the mechanical strength and flow characteristics of UAAV. The experimental prototype of UAAV demonstrates the competence of flying in the air and hovering in water through field trials.","PeriodicalId":51910,"journal":{"name":"Aviation","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aviation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3846/aviation.2022.16519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 1

Abstract

This article’s incitement interprets Unmanned Amphibious Aerial Vehicle (UAAV)’s conceptual design process in a systematic approach. The UAAV is conceptualised to be an ideal tool for limnologists in water quality assessment. Integration of hovercraft with the multi-rotor system helps collect water samples from remote and inaccessible water bodies. The UAAV flies in multi-rotor mode, subsequently land and glide along the water surface in hovercraft mode. The new and unconventional vehicle configuration makes the conceptual stage a challenging one in the design process. To overcome the challenges and strapped configuration of vehicle design, the Authors used a systematic approach of scenario-based design, morphological matrix, and Pugh’s method in the design process of the “Pahl & Beitz” model to retrieve the best possible UAAV design. The conglomerate design of UAAV is evaluated for its design requirements, and the computational analysis is performed to examine the mechanical strength and flow characteristics of UAAV. The experimental prototype of UAAV demonstrates the competence of flying in the air and hovering in water through field trials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于系统方法的无人两栖飞行器设计构想与评价
本文以系统的方法阐释了无人机的概念设计过程。UAAV被认为是湖泊学家进行水质评估的理想工具。气垫船和多旋翼系统的集成有助于从偏远和难以接近的水体中收集水样。无人机以多旋翼模式飞行,随后以气垫船模式降落并沿水面滑翔。新的非常规车辆配置使概念阶段成为设计过程中具有挑战性的阶段。为了克服飞行器设计中的挑战和约束配置,作者在“Pahl&Beitz”模型的设计过程中使用了基于场景的设计、形态矩阵和Pugh方法的系统方法来检索尽可能好的无人机设计。根据UAAV的设计要求,对UAAV的砾岩设计进行了评估,并进行了计算分析,以检验UAAV的机械强度和流动特性。无人机的实验样机通过现场试验证明了其在空中飞行和在水中悬停的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Aviation
Aviation ENGINEERING, AEROSPACE-
CiteScore
2.40
自引率
10.00%
发文量
20
审稿时长
15 weeks
期刊介绍: CONCERNING THE FOLLOWING FIELDS OF RESEARCH: ▪ Flight Physics ▪ Air Traffic Management ▪ Aerostructures ▪ Airports ▪ Propulsion ▪ Human Factors ▪ Aircraft Avionics, Systems and Equipment ▪ Air Transport Technologies and Development ▪ Flight Mechanics ▪ History of Aviation ▪ Integrated Design and Validation (method and tools) Besides, it publishes: short reports and notes, reviews, reports about conferences and workshops
期刊最新文献
DETERMINATION OF LOADS IN THE ULTRALIGHT HELICOPTER BLADES RATIONAL CONTROL BY TEMPERATURE IN VORTEX ENERGY SEPARATOR UNDER DESTABILIZING EFFECTS CUSTOMER-FOCUSED AIRCRAFT SEAT DESIGN: A CASE STUDY WITH AHP-QFD SAFETY MANAGEMENT SYSTEM AND HAZARDS IN THE AIRCRAFT MAINTENANCE INDUSTRY: A SYSTEMATIC LITERATURE REVIEW IMPLEMENTATION STUDY OF A PASSIVE SAFETY FEATURE IN THE RESCUE SYSTEMS OF SMALL AIRCRAFTS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1