{"title":"A novel MPPT design for a wind energy conversion system using grey wolf optimization","authors":"G. Rashmi, M. Linda","doi":"10.1080/00051144.2023.2218168","DOIUrl":null,"url":null,"abstract":"A significant problem is enhancing the reliability of the wind energy conversion system (WECS), when that runs in unpredictable weather. Therefore, it is essential to construct a maximum power point tracker (MPPT), a controller for measuring the optimum power that the WECS is expected to generate. Hill climbing-based techniques were used to simulate the tracker, but they had drawbacks in terms of tracking efficiency and speed. The Grey Wolf optimization algorithm (GWO) for modelling MPPT integrated with the WECS is proposed in this work as a novel, effective method. The system is made up of a wind turbine (WT) conjoined to a permanent magnet synchronous generator (PMSG), a 3-phase rectifier that converts the generator’s AC output power to direct current (DC), and a boost converter whose input DC voltage is controlled by the MOSFET duty cycle. The goal of the modelling procedure is the system’s electrical output power, which is presented as an optimization problem. The results confirmed the GWO-reliability MPPT’s in reaching the desired WECS performance.","PeriodicalId":55412,"journal":{"name":"Automatika","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatika","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/00051144.2023.2218168","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
A significant problem is enhancing the reliability of the wind energy conversion system (WECS), when that runs in unpredictable weather. Therefore, it is essential to construct a maximum power point tracker (MPPT), a controller for measuring the optimum power that the WECS is expected to generate. Hill climbing-based techniques were used to simulate the tracker, but they had drawbacks in terms of tracking efficiency and speed. The Grey Wolf optimization algorithm (GWO) for modelling MPPT integrated with the WECS is proposed in this work as a novel, effective method. The system is made up of a wind turbine (WT) conjoined to a permanent magnet synchronous generator (PMSG), a 3-phase rectifier that converts the generator’s AC output power to direct current (DC), and a boost converter whose input DC voltage is controlled by the MOSFET duty cycle. The goal of the modelling procedure is the system’s electrical output power, which is presented as an optimization problem. The results confirmed the GWO-reliability MPPT’s in reaching the desired WECS performance.
AutomatikaAUTOMATION & CONTROL SYSTEMS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
4.00
自引率
5.30%
发文量
65
审稿时长
4.5 months
期刊介绍:
AUTOMATIKA – Journal for Control, Measurement, Electronics, Computing and Communications is an international scientific journal that publishes scientific and professional papers in the field of automatic control, robotics, measurements, electronics, computing, communications and related areas. Click here for full Focus & Scope.
AUTOMATIKA is published since 1960, and since 1991 by KoREMA - Croatian Society for Communications, Computing, Electronics, Measurement and Control, Member of IMEKO and IFAC.