Intelligent Rider Optimization Algorithm with Deep Learning Enabled Hyperspectral Remote Sensing Imaging Classification

IF 2 4区 地球科学 Q3 REMOTE SENSING Canadian Journal of Remote Sensing Pub Date : 2022-06-27 DOI:10.1080/07038992.2022.2089102
A. Dutta, Majed Alsanea, B. Qureshi, Faisal Yousef Alghayadh, A. R. W. Sait
{"title":"Intelligent Rider Optimization Algorithm with Deep Learning Enabled Hyperspectral Remote Sensing Imaging Classification","authors":"A. Dutta, Majed Alsanea, B. Qureshi, Faisal Yousef Alghayadh, A. R. W. Sait","doi":"10.1080/07038992.2022.2089102","DOIUrl":null,"url":null,"abstract":"Abstract Hyperspectral imaging (HSI) can be attained by the use of high resolution optical sensors and it comprises several spectral bands of the identical remote sensing target and is treated as a three-dimension (3D) dataset. Recently, deep learning (DL) techniques are gained important attention among research communities for image classification. In this aspect, this study develops an intelligent rider optimization algorithm with deep learning enabled HSI classification model, named IRODL-HSIC technique. The proposed IRODL-HSIC technique aims to categorize the different class labels of the multispectral images. Besides, the IRODL-HSIC technique applies singular value decomposition. Moreover, the ResNet-152 technique was executed as a feature extractor to generate a collection of features. Furthermore, the rider optimization algorithm with cascaded recurrent neural network (CRNN) approach is utilized for the classification process. For ensuring the enhanced performance of the IRODL-HSIC algorithm, a wide range of simulations take place utilizing the multispectral images and the outcomes are examined under different aspects. The extensive comparative study highlighted the better performance of the IRODL-HSIC technique over the recent methods.","PeriodicalId":48843,"journal":{"name":"Canadian Journal of Remote Sensing","volume":"48 1","pages":"649 - 662"},"PeriodicalIF":2.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07038992.2022.2089102","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Hyperspectral imaging (HSI) can be attained by the use of high resolution optical sensors and it comprises several spectral bands of the identical remote sensing target and is treated as a three-dimension (3D) dataset. Recently, deep learning (DL) techniques are gained important attention among research communities for image classification. In this aspect, this study develops an intelligent rider optimization algorithm with deep learning enabled HSI classification model, named IRODL-HSIC technique. The proposed IRODL-HSIC technique aims to categorize the different class labels of the multispectral images. Besides, the IRODL-HSIC technique applies singular value decomposition. Moreover, the ResNet-152 technique was executed as a feature extractor to generate a collection of features. Furthermore, the rider optimization algorithm with cascaded recurrent neural network (CRNN) approach is utilized for the classification process. For ensuring the enhanced performance of the IRODL-HSIC algorithm, a wide range of simulations take place utilizing the multispectral images and the outcomes are examined under different aspects. The extensive comparative study highlighted the better performance of the IRODL-HSIC technique over the recent methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的高光谱遥感影像分类智能Rider优化算法
高光谱成像(HSI)是利用高分辨率光学传感器实现的,它由同一遥感目标的多个光谱波段组成,被视为一个三维数据集。近年来,深度学习技术在图像分类领域受到了广泛的关注。在这方面,本研究开发了一种基于深度学习的HSI分类模型的智能骑手优化算法,命名为IRODL-HSIC技术。提出的IRODL-HSIC技术旨在对多光谱图像的不同类别标签进行分类。此外,IRODL-HSIC技术采用奇异值分解。此外,将ResNet-152技术作为特征提取器来执行,以生成特征集合。在此基础上,采用基于级联递归神经网络(CRNN)的骑手优化算法进行分类。为了确保IRODL-HSIC算法的增强性能,利用多光谱图像进行了广泛的模拟,并从不同方面对结果进行了检验。广泛的比较研究强调了IRODL-HSIC技术比最近的方法更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
3.80%
发文量
40
期刊介绍: Canadian Journal of Remote Sensing / Journal canadien de télédétection is a publication of the Canadian Aeronautics and Space Institute (CASI) and the official journal of the Canadian Remote Sensing Society (CRSS-SCT). Canadian Journal of Remote Sensing provides a forum for the publication of scientific research and review articles. The journal publishes topics including sensor and algorithm development, image processing techniques and advances focused on a wide range of remote sensing applications including, but not restricted to; forestry and agriculture, ecology, hydrology and water resources, oceans and ice, geology, urban, atmosphere, and environmental science. Articles can cover local to global scales and can be directly relevant to the Canadian, or equally important, the international community. The international editorial board provides expertise in a wide range of remote sensing theory and applications.
期刊最新文献
Crop Classification Using Multi-Temporal RADARSAT Constellation Mission Compact Polarimetry SAR Data A Bi-Temporal Airborne Lidar Shrub-to-Tree Aboveground Biomass Model for the Taiga of Western Canada Estimating GDP by Fusing Nighttime Light and Land Cover Data Active Reinforcement Learning for the Semantic Segmentation of Urban Images Cumulative Changes in Minimum Snow/Ice Extent over Canada and Northern USA for 2000–2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1