The Tweetology of New and Renewable Energy in Indonesia

Ariana Yunita, Sara Florensia Telaumbanua, A. Irawan
{"title":"The Tweetology of New and Renewable Energy in Indonesia","authors":"Ariana Yunita, Sara Florensia Telaumbanua, A. Irawan","doi":"10.22146/ijccs.81397","DOIUrl":null,"url":null,"abstract":"The amount of unstructured data is increasing annually, which is promising forgaining insights. Twitter, a platform producing unstructured data, is currently one of the mostpopular media platforms used for conducting research on a topic's trend. This study attempts toanalyze the topic of New and Renewable Energy (NRE) in Indonesia. The purpose of this studyis to gain insights into the NRE topic trend over the last ten years by modeling the topicsdiscussed on Twitter and examining the location distribution of users who post tweets about thetopic. Accordingly, this study employed descriptive analysis, geocoding analysis, and topicmodeling. The results of descriptive analysis show that the development of NRE has acceleratedin recent years, particularly in 2021. Geocoding analysis reveals that the distribution of peoplewho engage in NRE posting activities is dominated by DKI Jakarta province. Topic modelingyielding two topics that were discussed the most by Indonesians over a 10-year period. The twotopics are related to government policies that support the development of NRE and electricity,which is Indonesia's focus in NRE. This study highlights the importance of analyzing theTweetology of NRE.","PeriodicalId":31625,"journal":{"name":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijccs.81397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The amount of unstructured data is increasing annually, which is promising forgaining insights. Twitter, a platform producing unstructured data, is currently one of the mostpopular media platforms used for conducting research on a topic's trend. This study attempts toanalyze the topic of New and Renewable Energy (NRE) in Indonesia. The purpose of this studyis to gain insights into the NRE topic trend over the last ten years by modeling the topicsdiscussed on Twitter and examining the location distribution of users who post tweets about thetopic. Accordingly, this study employed descriptive analysis, geocoding analysis, and topicmodeling. The results of descriptive analysis show that the development of NRE has acceleratedin recent years, particularly in 2021. Geocoding analysis reveals that the distribution of peoplewho engage in NRE posting activities is dominated by DKI Jakarta province. Topic modelingyielding two topics that were discussed the most by Indonesians over a 10-year period. The twotopics are related to government policies that support the development of NRE and electricity,which is Indonesia's focus in NRE. This study highlights the importance of analyzing theTweetology of NRE.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
印尼新能源和可再生能源的推特
非结构化数据的数量每年都在增加,这很有希望获得洞察力。Twitter是一个生产非结构化数据的平台,目前是最受欢迎的媒体平台之一,用于对一个主题的趋势进行研究。本研究试图分析印尼新能源和可再生能源(NRE)的主题。本研究的目的是通过对Twitter上讨论的主题进行建模,并检查发布有关该主题的推文的用户的位置分布,从而深入了解过去十年NRE主题的趋势。因此,本研究采用描述性分析、地理编码分析和主题建模。描述性分析结果表明,近年来,特别是在2021年,NRE的发展速度有所加快。地理编码分析显示,从事NRE张贴活动的人员分布以DKI雅加达省为主。话题模型得出了印尼人在过去10年里讨论最多的两个话题。这两个主题与政府支持新能源和电力发展的政策有关,这是印尼在新能源领域的重点。本研究强调了分析NRE推文的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
20
审稿时长
12 weeks
期刊最新文献
Identify Reviews of Pedulilindungi Applications using Topic Modeling with Latent Dirichlet Allocation Method Convolutional Long Short-Term Memory (C-LSTM) For Multi Product Prediction Optimizing ODP Device Placement on FTTH Network Using Genetic Algorithms Backward Elimination for Feature Selection on Breast Cancer Classification Using Logistic Regression and Support Vector Machine Algorithms ESSAY ANSWER CLASSIFICATION WITH SMOTE RANDOM FOREST AND ADABOOST IN AUTOMATED ESSAY SCORING
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1