{"title":"COVID-19 has illuminated the need for clearer AI-based risk management strategies","authors":"T. Swanson, J. Zelner, S. Guikema","doi":"10.1080/13669877.2022.2077411","DOIUrl":null,"url":null,"abstract":"Abstract Machine learning methods offer opportunities improve pandemic response and risk management by supplementing mechanistic modeling approaches to pandemic planning and response based on diverse sources of data at every level from the local to global scale. However, such solutions rely on the availability of appropriate data as well as communication and dissemination of that data to develop tools and guidance for decision making. A lack of consistency in the reporting and availability of disaggregated, detailed data on COVID-19 in the US has limited the application of artificial intelligence methods and the effectiveness of those methods for projecting the spread and subsequent impacts of this disease in communities. These limitations are missed opportunities for AI methods to make a positive contribution, and they introduce the possibility of inappropriate use of AI methods when not acknowledged. Going forward, governing bodies should develop data collection and sharing standards in collaboration with AI researchers and industry experts to facilitate preparedness for pandemics and other disasters in the future.","PeriodicalId":16975,"journal":{"name":"Journal of Risk Research","volume":"25 1","pages":"1223 - 1238"},"PeriodicalIF":2.4000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Risk Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1080/13669877.2022.2077411","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Machine learning methods offer opportunities improve pandemic response and risk management by supplementing mechanistic modeling approaches to pandemic planning and response based on diverse sources of data at every level from the local to global scale. However, such solutions rely on the availability of appropriate data as well as communication and dissemination of that data to develop tools and guidance for decision making. A lack of consistency in the reporting and availability of disaggregated, detailed data on COVID-19 in the US has limited the application of artificial intelligence methods and the effectiveness of those methods for projecting the spread and subsequent impacts of this disease in communities. These limitations are missed opportunities for AI methods to make a positive contribution, and they introduce the possibility of inappropriate use of AI methods when not acknowledged. Going forward, governing bodies should develop data collection and sharing standards in collaboration with AI researchers and industry experts to facilitate preparedness for pandemics and other disasters in the future.
期刊介绍:
The Journal of Risk Research is an international journal that publishes peer-reviewed theoretical and empirical research articles within the risk field from the areas of social, physical and health sciences and engineering, as well as articles related to decision making, regulation and policy issues in all disciplines. Articles will be published in English. The main aims of the Journal of Risk Research are to stimulate intellectual debate, to promote better risk management practices and to contribute to the development of risk management methodologies. Journal of Risk Research is the official journal of the Society for Risk Analysis Europe and the Society for Risk Analysis Japan.