Single_cell_GRN: gene regulatory network identification based on supervised learning method and Single-cell RNA-seq data

IF 4 3区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Biodata Mining Pub Date : 2022-06-11 DOI:10.1186/s13040-022-00297-8
Bin Yang, Wenzheng Bao, Baitong Chen, Dan Song
{"title":"Single_cell_GRN: gene regulatory network identification based on supervised learning method and Single-cell RNA-seq data","authors":"Bin Yang, Wenzheng Bao, Baitong Chen, Dan Song","doi":"10.1186/s13040-022-00297-8","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-022-00297-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 1
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Single_cell_GRN:基于监督学习方法和单细胞RNA-seq数据的基因调控网络识别
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biodata Mining
Biodata Mining MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
7.90
自引率
0.00%
发文量
28
审稿时长
23 weeks
期刊介绍: BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data. Topical areas include, but are not limited to: -Development, evaluation, and application of novel data mining and machine learning algorithms. -Adaptation, evaluation, and application of traditional data mining and machine learning algorithms. -Open-source software for the application of data mining and machine learning algorithms. -Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies. -Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.
期刊最新文献
Deep learning-based Emergency Department In-hospital Cardiac Arrest Score (Deep EDICAS) for early prediction of cardiac arrest and cardiopulmonary resuscitation in the emergency department. Supervised multiple kernel learning approaches for multi-omics data integration. Transcriptome-based network analysis related to regulatory T cells infiltration identified RCN1 as a potential biomarker for prognosis in clear cell renal cell carcinoma. Deciphering the tissue-specific functional effect of Alzheimer risk SNPs with deep genome annotation. Investigating potential drug targets for IgA nephropathy and membranous nephropathy through multi-queue plasma protein analysis: a Mendelian randomization study based on SMR and co-localization analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1