The Electromagnetic Field in the Vicinity of Radio-Navigation Systems

Natalia JÓŹWIK-MICHAŁOWSKA, Andrzej Felski
{"title":"The Electromagnetic Field in the Vicinity of Radio-Navigation Systems","authors":"Natalia JÓŹWIK-MICHAŁOWSKA, Andrzej Felski","doi":"10.1515/aon-2018-0008","DOIUrl":null,"url":null,"abstract":"Abstract Today, electromagnetic waves are the basic medium for all communication tasks. This applies also to navigation, where the most commonly waves have lengths measured in centimetres (radar, GPS) and longer, such as the waves used in the AIS or DGPS technologies. Navigators are mostly interested in the communication functionality of the used systems, i.e. such factors as range of the system and signal-to-noise ratio. This leads directly to increasing the transmitters’ power. However, it is important to bear in mind that the electromagnetic field can endanger human health, therefore, establishing the level of radiation both on vessels and near the shore transmitters is crucial in this context. The experience of authors shows that the knowledge of the most of navigators hereupon is not large. From this result extremely irresponsible behaviors of one persons, as well as inexplicable phobias others. This article presents the subject using the example of the electromagnetic field present near a lighthouse emitting AIS and DGPS signals. Relevant measurements were made at the Rozewie lighthouse by certified laboratory of Maritime Institute in Gdansk according the polish standards and internal, certified procedures. Results of the measurements were related to the national and European standards for electromagnetic field measurements in the context of occupational health and safety.","PeriodicalId":30601,"journal":{"name":"Annual of Navigation","volume":"25 1","pages":"109 - 124"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual of Navigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/aon-2018-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Today, electromagnetic waves are the basic medium for all communication tasks. This applies also to navigation, where the most commonly waves have lengths measured in centimetres (radar, GPS) and longer, such as the waves used in the AIS or DGPS technologies. Navigators are mostly interested in the communication functionality of the used systems, i.e. such factors as range of the system and signal-to-noise ratio. This leads directly to increasing the transmitters’ power. However, it is important to bear in mind that the electromagnetic field can endanger human health, therefore, establishing the level of radiation both on vessels and near the shore transmitters is crucial in this context. The experience of authors shows that the knowledge of the most of navigators hereupon is not large. From this result extremely irresponsible behaviors of one persons, as well as inexplicable phobias others. This article presents the subject using the example of the electromagnetic field present near a lighthouse emitting AIS and DGPS signals. Relevant measurements were made at the Rozewie lighthouse by certified laboratory of Maritime Institute in Gdansk according the polish standards and internal, certified procedures. Results of the measurements were related to the national and European standards for electromagnetic field measurements in the context of occupational health and safety.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无线电导航系统附近的电磁场
摘要今天,电磁波是所有通信任务的基本介质。这也适用于导航,其中最常见的波的长度以厘米为单位(雷达、GPS)或更长,例如AIS或DGPS技术中使用的波。导航员最感兴趣的是所用系统的通信功能,即系统的范围和信噪比等因素。这直接导致变送器的功率增加。然而,重要的是要记住,电磁场可能危害人类健康,因此,在这种情况下,确定船只和近海发射机的辐射水平至关重要。作者的经验表明,这里大多数航海家的知识并不多。由此导致一个人极不负责任的行为,以及其他人莫名其妙的恐惧。本文以灯塔附近发射AIS和DGPS信号的电磁场为例介绍了这一主题。格但斯克海事研究所的认证实验室根据抛光标准和内部认证程序在Rozewie灯塔进行了相关测量。测量结果与职业健康和安全背景下电磁场测量的国家和欧洲标准有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
20 weeks
期刊最新文献
Case study of Bayesian RAIM algorithm integrated with Spatial Feature Constraint and Fault Detection and Exclusion algorithms for multi‐sensor positioning Overbounding the effect of uncertain Gauss‐Markov noise in Kalman filtering Enabling ambiguity resolution in CSRS‐PPP GNSS spoofing detection through spatial processing ION GNSS software‐defined radio metadata standard
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1