Video analysis for the detection of animals using convolutional neural networks and consumer-grade drones

IF 1.3 Q3 REMOTE SENSING Journal of Unmanned Vehicle Systems Pub Date : 2021-04-15 DOI:10.1139/JUVS-2020-0018
C. Chalmers, P. Fergus, C. C. Montañez, S. Longmore, S. Wich
{"title":"Video analysis for the detection of animals using convolutional neural networks and consumer-grade drones","authors":"C. Chalmers, P. Fergus, C. C. Montañez, S. Longmore, S. Wich","doi":"10.1139/JUVS-2020-0018","DOIUrl":null,"url":null,"abstract":"Determining animal distribution and density is important in conservation. The process is both time-consuming and labour-intensive. Drones have been used to help mitigate human-intensive tasks by covering large geographical areas over a much shorter timescale. In this paper we investigate this idea further using a proof of concept to detect rhinos and cars from drone footage. The proof of concept utilises off-the-shelf technology and consumer-grade drone hardware. The study demonstrates the feasibility of using machine learning (ML) to automate routine conservation tasks, such as animal detection and tracking. The prototype has been developed using a DJI Mavic Pro 2 and tested over a global system for mobile communications (GSM) network. The Faster-RCNN Resnet 101 architecture is used for transfer learning. Inference is performed with a frame sampling technique to address the required trade-off between precision, processing speed, and live video feed synchronisation. Inference models are hosted on a web platform and video streams from the drone (using OcuSync) are transmitted to a real-time messaging protocol (RTMP) server for subsequent classification. During training, the best model achieves a mean average precision (mAP) of 0.83 intersection over union (@IOU) 0.50 and 0.69 @IOU 0.75, respectively. On testing the system in Knowsley Safari our prototype was able to achieve the following: sensitivity (Sen), 0.91 (0.869, 0.94); specificity (Spec), 0.78 (0.74, 0.82); and an accuracy (ACC), 0.84 (0.81, 0.87) when detecting rhinos, and Sen, 1.00 (1.00, 1.00); Spec, 1.00 (1.00, 1.00); and an ACC, 1.00 (1.00, 1.00) when detecting cars.","PeriodicalId":45619,"journal":{"name":"Journal of Unmanned Vehicle Systems","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Unmanned Vehicle Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/JUVS-2020-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 6

Abstract

Determining animal distribution and density is important in conservation. The process is both time-consuming and labour-intensive. Drones have been used to help mitigate human-intensive tasks by covering large geographical areas over a much shorter timescale. In this paper we investigate this idea further using a proof of concept to detect rhinos and cars from drone footage. The proof of concept utilises off-the-shelf technology and consumer-grade drone hardware. The study demonstrates the feasibility of using machine learning (ML) to automate routine conservation tasks, such as animal detection and tracking. The prototype has been developed using a DJI Mavic Pro 2 and tested over a global system for mobile communications (GSM) network. The Faster-RCNN Resnet 101 architecture is used for transfer learning. Inference is performed with a frame sampling technique to address the required trade-off between precision, processing speed, and live video feed synchronisation. Inference models are hosted on a web platform and video streams from the drone (using OcuSync) are transmitted to a real-time messaging protocol (RTMP) server for subsequent classification. During training, the best model achieves a mean average precision (mAP) of 0.83 intersection over union (@IOU) 0.50 and 0.69 @IOU 0.75, respectively. On testing the system in Knowsley Safari our prototype was able to achieve the following: sensitivity (Sen), 0.91 (0.869, 0.94); specificity (Spec), 0.78 (0.74, 0.82); and an accuracy (ACC), 0.84 (0.81, 0.87) when detecting rhinos, and Sen, 1.00 (1.00, 1.00); Spec, 1.00 (1.00, 1.00); and an ACC, 1.00 (1.00, 1.00) when detecting cars.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用卷积神经网络和消费级无人机进行动物检测的视频分析
确定动物的分布和密度在保护中很重要。这个过程既费时又费力。通过在更短的时间内覆盖更大的地理区域,无人机已被用于帮助减轻人力密集型任务。在本文中,我们使用概念验证来进一步研究这一想法,以从无人机镜头中检测犀牛和汽车。概念验证利用了现成的技术和消费级无人机硬件。该研究证明了使用机器学习(ML)自动化日常保护任务(如动物检测和跟踪)的可行性。原型机已经使用大疆Mavic Pro 2开发,并在全球移动通信(GSM)网络系统上进行了测试。Faster-RCNN Resnet 101架构用于迁移学习。推理是用帧采样技术执行的,以解决精度、处理速度和实时视频馈送同步之间所需的权衡。推理模型托管在web平台上,来自无人机的视频流(使用OcuSync)被传输到实时消息传递协议(RTMP)服务器以进行后续分类。在训练过程中,最佳模型的平均精度(mAP)分别为0.83交集/联合(@IOU) 0.50和0.69 @IOU 0.75。在Knowsley Safari中测试系统,我们的原型能够实现以下目标:灵敏度(Sen), 0.91 (0.869, 0.94);特异性(Spec), 0.78 (0.74, 0.82);检测犀牛的准确率(ACC)为0.84 (0.81,0.87),Sen为1.00 (1.00,1.00);规格,1.00 (1.00,1.00);检测车辆时,ACC为1.00(1.00,1.00)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
2
期刊最新文献
An examination of trends in the growing scientific literature on approaching wildlife with drones The utility of drones for studying polar bear behaviour in the Canadian Arctic: opportunities and recommendations Detection and tracking of belugas, kayaks and motorized boats in drone video using deep learning Potential Cyber Threats, Vulnerabilities, and Protections of Unmanned Vehicles Pilots’ Willingness to Operate in Urban Air Mobility Integrated Airspace: A Moderated Mediation Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1