Convergence of persistence diagram in the sparse regime

IF 1.8 2区 数学 Q2 STATISTICS & PROBABILITY Annals of Applied Probability Pub Date : 2021-03-24 DOI:10.1214/22-aap1800
Takashi Owada
{"title":"Convergence of persistence diagram in the sparse regime","authors":"Takashi Owada","doi":"10.1214/22-aap1800","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to examine the asymptotic behavior of persistence diagrams associated with Čech filtration. A persistence diagram is a graphical descriptor of a topological and algebraic structure of geometric objects. We consider Čech filtration over a scaled random sample r−1 n Xn = {r−1 n X1, . . . , r−1 n Xn}, such that rn → 0 as n → ∞. We treat persistence diagrams as a point process and establish their limit theorems in the sparse regime: nr n → 0, n → ∞. In this setting, we show that the asymptotics of the kth persistence diagram depends on the limit value of the sequence nr d(k+1) n . If n r d(k+1) n → ∞, the scaled persistence diagram converges to a deterministic Radon measure almost surely in the vague metric. If rn decays faster so that nr d(k+1) n → c ∈ (0,∞), the persistence diagram weakly converges to a limiting point process without normalization. Finally, if nr d(k+1) n → 0, the sequence of probability distributions of a persistence diagram should be normalized, and the resulting convergence will be treated in terms of the M0-topology.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1800","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 7

Abstract

The objective of this paper is to examine the asymptotic behavior of persistence diagrams associated with Čech filtration. A persistence diagram is a graphical descriptor of a topological and algebraic structure of geometric objects. We consider Čech filtration over a scaled random sample r−1 n Xn = {r−1 n X1, . . . , r−1 n Xn}, such that rn → 0 as n → ∞. We treat persistence diagrams as a point process and establish their limit theorems in the sparse regime: nr n → 0, n → ∞. In this setting, we show that the asymptotics of the kth persistence diagram depends on the limit value of the sequence nr d(k+1) n . If n r d(k+1) n → ∞, the scaled persistence diagram converges to a deterministic Radon measure almost surely in the vague metric. If rn decays faster so that nr d(k+1) n → c ∈ (0,∞), the persistence diagram weakly converges to a limiting point process without normalization. Finally, if nr d(k+1) n → 0, the sequence of probability distributions of a persistence diagram should be normalized, and the resulting convergence will be treated in terms of the M0-topology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀疏状态下持久图的收敛性
本文的目的是研究与Čech过滤相关的持续图的渐近行为。持久性图是几何对象的拓扑和代数结构的图形描述符。我们考虑Čech过滤在一个缩放的随机样本r−1 n Xn = {r−1 n X1,…, r−1 n Xn},使得rn→0 = n→∞。我们将持久性图视为一个点过程,并建立了其在稀疏域的极限定理:nr n→0,n→∞。在这种情况下,我们证明了第k个持续图的渐近性取决于序列nr d(k+1) n的极限值。当n r d(k+1) n→∞时,尺度持续图在模糊度量中几乎肯定收敛于确定性Radon测度。如果rn衰减较快,使得nr d(k+1) n→c∈(0,∞),则持久性图弱收敛到一个不归一化的极限点过程。最后,如果nr d(k+1) n→0,则持久性图的概率分布序列应归一化,并根据m0拓扑处理由此产生的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
期刊最新文献
Disagreement coupling of Gibbs processes with an application to Poisson approximation Hydrodynamic limit for the Kob–Andersen model Geometry of random Cayley graphs of Abelian groups The trunks of CLE(4) explorations Strong error bounds for the convergence to its mean field limit for systems of interacting neurons in a diffusive scaling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1