Review on tools and tool wear in EDM

IF 2.7 4区 工程技术 Q2 ENGINEERING, MANUFACTURING Machining Science and Technology Pub Date : 2021-09-03 DOI:10.1080/10910344.2021.1971711
Deepak Sharma, S. Hiremath
{"title":"Review on tools and tool wear in EDM","authors":"Deepak Sharma, S. Hiremath","doi":"10.1080/10910344.2021.1971711","DOIUrl":null,"url":null,"abstract":"Abstract Electric discharge machining (EDM) is a nontraditional machining process based on the thermal erosion of the electrically conductive workpiece and tool electrodes. The product cost manufactured by the EDM process mainly depends on the tooling cost, which comprises the cost of tool material, tool fabrication, and tool maintenance. The properties of tool material affect the machining performance parameters like material removal rate (MRR), tool wear rate (TWR), and surface roughness. The performance parameters are also influenced by the tool geometry, tool fabrication method, and the way by which both tools and workpiece interact with each other. In the EDM process, tool wear is difficult to avoid and high TWR decreases the accuracy of the machined parts. Therefore, to obtain the desired accuracy it is necessary to calculate TWR and provide wear compensation. The tool electrode fabrication method also decides the TWR. Tool electrodes are generally manufactured by metal forming techniques like forging and drawing, other than that, powder metallurgy, additive manufacturing are also being used. The process performance of the tool can be improved by cryogenic treatment and coating of the tool electrodes. This review provides the literature survey about the different types of tools used in the EDM process, methods of fabrication, tool wear types; measurement and compensation techniques.","PeriodicalId":51109,"journal":{"name":"Machining Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10910344.2021.1971711","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 12

Abstract

Abstract Electric discharge machining (EDM) is a nontraditional machining process based on the thermal erosion of the electrically conductive workpiece and tool electrodes. The product cost manufactured by the EDM process mainly depends on the tooling cost, which comprises the cost of tool material, tool fabrication, and tool maintenance. The properties of tool material affect the machining performance parameters like material removal rate (MRR), tool wear rate (TWR), and surface roughness. The performance parameters are also influenced by the tool geometry, tool fabrication method, and the way by which both tools and workpiece interact with each other. In the EDM process, tool wear is difficult to avoid and high TWR decreases the accuracy of the machined parts. Therefore, to obtain the desired accuracy it is necessary to calculate TWR and provide wear compensation. The tool electrode fabrication method also decides the TWR. Tool electrodes are generally manufactured by metal forming techniques like forging and drawing, other than that, powder metallurgy, additive manufacturing are also being used. The process performance of the tool can be improved by cryogenic treatment and coating of the tool electrodes. This review provides the literature survey about the different types of tools used in the EDM process, methods of fabrication, tool wear types; measurement and compensation techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电火花加工中刀具与刀具磨损的研究进展
摘要电火花加工(EDM)是一种基于导电工件和刀具电极热侵蚀的非传统加工工艺。电火花加工制造的产品成本主要取决于刀具成本,刀具成本包括刀具材料成本、刀具制造成本和刀具维护成本。刀具材料的性能影响着材料去除率(MRR)、刀具磨损率(TWR)和表面粗糙度等加工性能参数。刀具几何形状、刀具制造方法以及刀具和工件相互作用的方式也会影响刀具的性能参数。在电火花加工过程中,刀具磨损是难以避免的,高TWR降低了加工零件的精度。因此,为了获得期望的精度,有必要计算TWR并提供磨损补偿。刀具电极的制造方法也决定了TWR的大小。工具电极通常通过锻造和拉伸等金属成形技术制造,除此之外,粉末冶金、增材制造也在使用。通过对刀具电极进行低温处理和涂层处理,可以提高刀具的工艺性能。本文综述了电火花加工中使用的不同类型的刀具、加工方法、刀具磨损类型的文献综述;测量和补偿技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Machining Science and Technology
Machining Science and Technology 工程技术-材料科学:综合
CiteScore
5.70
自引率
3.70%
发文量
18
审稿时长
6 months
期刊介绍: Machining Science and Technology publishes original scientific and technical papers and review articles on topics related to traditional and nontraditional machining processes performed on all materials—metals and advanced alloys, polymers, ceramics, composites, and biomaterials. Topics covered include: -machining performance of all materials, including lightweight materials- coated and special cutting tools: design and machining performance evaluation- predictive models for machining performance and optimization, including machining dynamics- measurement and analysis of machined surfaces- sustainable machining: dry, near-dry, or Minimum Quantity Lubrication (MQL) and cryogenic machining processes precision and micro/nano machining- design and implementation of in-process sensors for monitoring and control of machining performance- surface integrity in machining processes, including detection and characterization of machining damage- new and advanced abrasive machining processes: design and performance analysis- cutting fluids and special coolants/lubricants- nontraditional and hybrid machining processes, including EDM, ECM, laser and plasma-assisted machining, waterjet and abrasive waterjet machining
期刊最新文献
Investigation on the machining characteristics of AZ91 magnesium alloy using uncoated and CVD-diamond coated WC-Co inserts Combination of minimum quantity lubrication (MQL) with solid lubricant (SL): challenges, predictions and implications for sustainability Novel insights into conventional machining of metal additive manufactured components: a comprehensive review Multiobjective optimization of end milling parameters for enhanced machining performance on 42CrMo4 using machine learning and NSGA-III Flow field design and simulation in electrochemical machining for closed integral components
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1