R. Alfanz, Aqbal Hasnain, Wahyuni Affan, Martiningsih
{"title":"Smart Farm Agriculture Design by Applying a Solar Power Plant","authors":"R. Alfanz, Aqbal Hasnain, Wahyuni Affan, Martiningsih","doi":"10.25077/jnte.v12n2.1085.2023","DOIUrl":null,"url":null,"abstract":"Every year as the world's population increases, land is getting full and not enough to be used in agriculture. Various types of technological developments have been abused to grow crops. The purpose of this research is to design a smart farm agriculture system by planting without soil and utilizing technological advances in the city. Smart farming is a technology in agriculture with the Internet of Things (IoT) to help farmers public people get data easy from the garden. Hydroponics is soil-less farming that uses minerals or fertilizers dissolved in water. Nutrient Film Technique (NFT) is one of the hydroponic methods using a thin layer on the flow of nutrients through pipe installations. Pumps that require continuous electrical power can harness solar power plants as an energy source. Off-grid system on solar panel plan produce electrical energy according to the required power without being connected to state electricity network. The design applies a multi-sensor system that includes nutrient sensors and pH sensors, as well as automatic solution pumps, temperature PZEM-004T sensors, and a data logger that collects data and connected to internet server with visual on app Thinger.io as monitoring platform. The results, pH is ranging from 6.5 to 7.5. The TDS sensor testing resulted in a 0.313% pH sensor error with an accuracy of 99.69%, and the TDS sensor testing resulted in a 1.18% TDS sensor error with an accuracy of 98.82% also the agriculture farm system testing, the testing in 1 until 2 weeks showed an error percentage of 38% in the pH solution and 38.73% in the nutrient solution. In addition, the solar panels generated a total power output of 1700.56 W, while the total load demand was 1165.74 W. Based on the testing results, the smart farming system can monitor nutrient and PH solution levels, the automatic pump controls a stable solution, and the power sourced from PLTS can supply the pump properly","PeriodicalId":30660,"journal":{"name":"Jurnal Nasional Teknik Elektro","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Nasional Teknik Elektro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25077/jnte.v12n2.1085.2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Every year as the world's population increases, land is getting full and not enough to be used in agriculture. Various types of technological developments have been abused to grow crops. The purpose of this research is to design a smart farm agriculture system by planting without soil and utilizing technological advances in the city. Smart farming is a technology in agriculture with the Internet of Things (IoT) to help farmers public people get data easy from the garden. Hydroponics is soil-less farming that uses minerals or fertilizers dissolved in water. Nutrient Film Technique (NFT) is one of the hydroponic methods using a thin layer on the flow of nutrients through pipe installations. Pumps that require continuous electrical power can harness solar power plants as an energy source. Off-grid system on solar panel plan produce electrical energy according to the required power without being connected to state electricity network. The design applies a multi-sensor system that includes nutrient sensors and pH sensors, as well as automatic solution pumps, temperature PZEM-004T sensors, and a data logger that collects data and connected to internet server with visual on app Thinger.io as monitoring platform. The results, pH is ranging from 6.5 to 7.5. The TDS sensor testing resulted in a 0.313% pH sensor error with an accuracy of 99.69%, and the TDS sensor testing resulted in a 1.18% TDS sensor error with an accuracy of 98.82% also the agriculture farm system testing, the testing in 1 until 2 weeks showed an error percentage of 38% in the pH solution and 38.73% in the nutrient solution. In addition, the solar panels generated a total power output of 1700.56 W, while the total load demand was 1165.74 W. Based on the testing results, the smart farming system can monitor nutrient and PH solution levels, the automatic pump controls a stable solution, and the power sourced from PLTS can supply the pump properly