The effect of heat input on microstructure and HAZ expansion in dissimilar joints between API5L X80 / DSS 2205 steels using thermal cycles

IF 0.6 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING Revista De Metalurgia Pub Date : 2022-07-26 DOI:10.3989/revmetalm.222
Seyed Meisam Zahraei, R. Dehmolaei, A. Ashrafi
{"title":"The effect of heat input on microstructure and HAZ expansion in dissimilar joints between API5L X80 / DSS 2205 steels using thermal cycles","authors":"Seyed Meisam Zahraei, R. Dehmolaei, A. Ashrafi","doi":"10.3989/revmetalm.222","DOIUrl":null,"url":null,"abstract":"In this research, the effect of the shielded metal arc welding (SMAW) process heat input upon the microstructure and development of the heat-affected zone in the dissimilar joint of API 5L X80/DS5 2205 steels was investigated by recording the thermal cycles with thermocouple implantation in the perpendicular direction of the weld line. The filler metal used (electrode) is DSS 2209. The microstructure of the base and weld metals and their interfaces at different heat inputs were investigated using the scanning electron microscopy/energy-dispersive spectroscopy analysis technique (SEM/EDS) and optical microscopy (OM). The results indicated that the interface between the base metals and the weld metal has excellent consistency and that there is no evidence of cracks at different heat inputs. By increasing the heat input, it was determined that the amount of secondary austenite in the weld metal and heat-affected zone of 2205 steel had been increased. There occurred an epitaxial growth at the interface of 2209/2205, and there were a fine transition zone and Type II boundaries at the interface of 2209/ API 5L X80. The areas containing coarse, fine, and partially fine grains were detected in the heat-affected zone of the X80 steel. The thermal cycle results determined that the temperature peak in the areas away from the fusion line had increased by increasing the heat input and that the heat-affected zone of the two base metals, particularly the X80 steel, had been extended further.","PeriodicalId":21206,"journal":{"name":"Revista De Metalurgia","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De Metalurgia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3989/revmetalm.222","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 1

Abstract

In this research, the effect of the shielded metal arc welding (SMAW) process heat input upon the microstructure and development of the heat-affected zone in the dissimilar joint of API 5L X80/DS5 2205 steels was investigated by recording the thermal cycles with thermocouple implantation in the perpendicular direction of the weld line. The filler metal used (electrode) is DSS 2209. The microstructure of the base and weld metals and their interfaces at different heat inputs were investigated using the scanning electron microscopy/energy-dispersive spectroscopy analysis technique (SEM/EDS) and optical microscopy (OM). The results indicated that the interface between the base metals and the weld metal has excellent consistency and that there is no evidence of cracks at different heat inputs. By increasing the heat input, it was determined that the amount of secondary austenite in the weld metal and heat-affected zone of 2205 steel had been increased. There occurred an epitaxial growth at the interface of 2209/2205, and there were a fine transition zone and Type II boundaries at the interface of 2209/ API 5L X80. The areas containing coarse, fine, and partially fine grains were detected in the heat-affected zone of the X80 steel. The thermal cycle results determined that the temperature peak in the areas away from the fusion line had increased by increasing the heat input and that the heat-affected zone of the two base metals, particularly the X80 steel, had been extended further.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热循环研究了热输入对API5L X80 / DSS 2205钢异种接头组织和热影响区扩展的影响
通过记录垂直焊缝方向热电偶注入的热循环,研究了保护金属电弧焊(SMAW)工艺热输入对API 5L X80/DS5 2205钢异种接头显微组织和热影响区发展的影响。所使用的填充金属(电极)是dss2209。采用扫描电镜/能谱分析技术(SEM/EDS)和光学显微镜(OM)研究了不同热输入下母材和焊缝金属及其界面的显微组织。结果表明,母材与焊缝金属之间的界面具有良好的一致性,在不同的热输入下均未出现裂纹。通过增加热输入,2205钢焊缝金属和热影响区的二次奥氏体数量增加。2209/2205的界面处出现了外延生长,2209/ API 5L X80的界面处出现了细小的过渡区和II型边界。在X80钢的热影响区检测到含有粗、细和部分细晶粒的区域。热循环结果表明,随着热输入的增加,远离熔合线区域的温度峰值有所增加,两种贱金属,特别是X80钢的热影响区进一步扩大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Revista De Metalurgia
Revista De Metalurgia 工程技术-冶金工程
CiteScore
1.30
自引率
25.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: Revista de Metalurgia is a bimonhly publication. Since 1998 Revista de Metalurgia and Revista Soldadura have been combined in a single publicación that conserves the name Revista de Metalurgia but also includes welding and cutting topics. Revista de Metalurgia is cited since 1997 in the ISI"s Journal of Citation Reports (JCR) Science Edition, and in SCOPUS.
期刊最新文献
Optimization on the electrical discharge machining (EDM) process parameters of aged AA7075/TiC metal matrix composites Investigations on microstructure, hardness and tribological behaviour of AA7075-Al2O3 composites synthesized via stir casting route Wear performance of GGG60 ductile iron rollers coated with WC-Co by electro spark deposition Characterizing the mechanical deformation response of AHSS steels: A comparative study of cyclic plasticity models under monotonic and reversal loading Study on mechanical and micro structural properties of spin arc welding in Hastelloy C-2000
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1